Abstract:Present Large Language Models (LLM) self-training methods always under-sample on challenging queries, leading to inadequate learning on difficult problems which limits LLMs' ability. Therefore, this work proposes a difficulty-aware self-training (DAST) framework that focuses on improving both the quantity and quality of self-generated responses on challenging queries during self-training. DAST is specified in three components: 1) sampling-based difficulty level estimation, 2) difficulty-aware data augmentation, and 3) the self-training algorithm using SFT and DPO respectively. Experiments on mathematical tasks demonstrate the effectiveness and generalization of DAST, highlighting the critical role of difficulty-aware strategies in advancing LLM self-training.
Abstract:We present DocPuzzle, a rigorously constructed benchmark for evaluating long-context reasoning capabilities in large language models (LLMs). This benchmark comprises 100 expert-level QA problems requiring multi-step reasoning over long real-world documents. To ensure the task quality and complexity, we implement a human-AI collaborative annotation-validation pipeline. DocPuzzle introduces an innovative evaluation framework that mitigates guessing bias through checklist-guided process analysis, establishing new standards for assessing reasoning capacities in LLMs. Our evaluation results show that: 1)Advanced slow-thinking reasoning models like o1-preview(69.7%) and DeepSeek-R1(66.3%) significantly outperform best general instruct models like Claude 3.5 Sonnet(57.7%); 2)Distilled reasoning models like DeepSeek-R1-Distill-Qwen-32B(41.3%) falls far behind the teacher model, suggesting challenges to maintain the generalization of reasoning capabilities relying solely on distillation.
Abstract:Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or real-time data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, weather/map apps), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues:(1) increased delays due to unnecessary tool calls, and (2) potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, representing the model's awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making across multiple base models and benchmarks.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks, yet the intricacies of their problem-solving mechanisms in system 2 tasks are not sufficiently explored. Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation and compressing the explored knowledge into System 1 process. In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges: (1) the complex hidden reasoning processes and (2) the heterogeneous data distributions that complicate the exploration and training of robust LLM solvers. To tackle these issues, we propose a novel BDC framework that explores insightful System 2 knowledge of LLMs using a MC-Tree-Of-Agents algorithm with mutual \textbf{B}oosting, \textbf{D}isentangles the heterogeneous training data for composable LoRA-experts, and obtain \textbf{C}ustomized problem solver for each data instance with an input-aware hypernetwork to weight over the LoRA-experts, offering effectiveness, flexibility, and robustness. This framework leverages multiple LLMs through mutual verification and boosting, integrated into a Monte-Carlo Tree Search process enhanced by reflection-based pruning and refinement. Additionally, we introduce the DisenLora algorithm, which clusters heterogeneous data to fine-tune LLMs into composable Lora experts, enabling the adaptive generation of customized problem solvers through an input-aware hypernetwork. This work lays the groundwork for advancing LLM capabilities in complex reasoning tasks, offering a novel System2-to-System1 solution.
Abstract:LLM-as-a-Judge, which generates chain-of-thought (CoT) judgments, has become a widely adopted auto-evaluation method. However, its reliability is compromised by the CoT reasoning's inability to capture comprehensive and deeper details, often leading to incomplete outcomes. Existing methods mainly rely on majority voting or criteria expansion, which is insufficient to address the limitation in CoT. We propose Crowd-based Comparative Evaluation, which introduces additional crowd responses to compare with the candidate responses, thereby exposing deeper and more comprehensive details within the candidate responses. This process effectively guides LLM-as-a-Judge to provide a more detailed CoT judgment. Extensive experiments demonstrate that our approach enhances evaluation reliability, achieving an average accuracy gain of 6.7% across five benchmarks. Moreover, our method produces higher-quality CoTs that facilitate judge distillation and exhibit superior performance in rejection sampling for supervised fine-tuning (SFT), referred to as crowd rejection sampling, thereby enabling more efficient SFT. Our analysis confirms that CoTs generated by ours are more comprehensive and of higher quality, and evaluation accuracy improves as inference scales.
Abstract:Existing approaches to mathematical reasoning with large language models (LLMs) rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation. While efforts have been made to combine these methods, they primarily rely on post-selection or predefined strategies, leaving an open question: whether LLMs can autonomously adapt their reasoning strategy based on their inherent capabilities. In this work, we propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously, aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data selection during supervised fine-tuning (SFT) to tailor training data to the model's unique abilities. This approach equips LLMs to autonomously determine and apply the appropriate reasoning strategy at test time. We evaluate TATA through extensive experiments on six mathematical reasoning benchmarks, using both general-purpose and math-specialized LLMs. Empirical results demonstrate that TATA effectively combines the complementary strengths of CoT and TIR, achieving superior or comparable performance with improved inference efficiency compared to TIR alone. Further analysis underscores the critical role of aptitude-aware data selection in enabling LLMs to make effective and adaptive reasoning decisions and align reasoning strategies with model capabilities.
Abstract:Multi-turn interaction in the dialogue system research refers to a system's ability to maintain context across multiple dialogue turns, enabling it to generate coherent and contextually relevant responses. Recent advancements in large language models (LLMs) have significantly expanded the scope of multi-turn interaction, moving beyond chatbots to enable more dynamic agentic interactions with users or environments. In this paper, we provide a focused review of the multi-turn capabilities of LLMs, which are critical for a wide range of downstream applications, including conversational search and recommendation, consultation services, and interactive tutoring. This survey explores four key aspects: (1) the core model capabilities that contribute to effective multi-turn interaction, (2) how multi-turn interaction is evaluated in current practice, (3) the general algorithms used to enhance multi-turn interaction, and (4) potential future directions for research in this field.
Abstract:As a crucial step to enhance LLMs alignment with human intentions, Instruction Fine-Tuning (IFT) has a high demand on dataset quality. However, existing IFT datasets often contain knowledge that is inconsistent with LLMs' internal knowledge learned from the pre-training phase, which can greatly affect the efficacy of IFT. To address this issue, we introduce NILE (iNternal consIstency aLignmEnt) framework, aimed at optimizing IFT datasets to unlock LLMs' capability further. NILE operates by eliciting target pre-trained LLM's internal knowledge corresponding to instruction data. The internal knowledge is leveraged to revise the answer in IFT datasets. Additionally, we propose a novel Internal Consistency Filtering (ICF) method to filter training samples, ensuring its high consistency with LLM's internal knowledge. Our experiments demonstrate that NILE-aligned IFT datasets sharply boost LLM performance across multiple LLM ability evaluation datasets, achieving up to 66.6% gain on Arena-Hard and 68.5% on Alpaca-Eval V2. Further analysis confirms that each component of the NILE}framework contributes to these substantial performance improvements, and provides compelling evidence that dataset consistency with pre-trained internal knowledge is pivotal for maximizing LLM potential.
Abstract:Recent advances in foundation models, particularly Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs), facilitate intelligent agents being capable of performing complex tasks. By leveraging the ability of (M)LLMs to process and interpret Graphical User Interfaces (GUIs), these agents can autonomously execute user instructions by simulating human-like interactions such as clicking and typing. This survey consolidates recent research on (M)LLM-based GUI agents, highlighting key innovations in data, frameworks, and applications. We begin by discussing representative datasets and benchmarks. Next, we summarize a unified framework that captures the essential components used in prior research, accompanied by a taxonomy. Additionally, we explore commercial applications of (M)LLM-based GUI agents. Drawing from existing work, we identify several key challenges and propose future research directions. We hope this paper will inspire further developments in the field of (M)LLM-based GUI agents.
Abstract:Supervised fine-tuning (SFT) is a common method to enhance the tool calling capabilities of Large Language Models (LLMs), with the training data often being synthesized. The current data synthesis process generally involves sampling a set of tools, formulating a requirement based on these tools, and generating the call statements. However, tools sampled randomly lack relevance, making them difficult to combine and thus reducing the diversity of the data. Additionally, current work overlooks the coherence between turns of dialogues, leading to a gap between the synthesized data and real-world scenarios. To address these issues, we propose a Graph-based Sampling strategy to sample more relevant tool combinations, and a Planned-generation strategy to create plans that guide the synthesis of coherent dialogues. We integrate these two strategies and enable multiple agents to synthesize the dialogue data interactively, resulting in our tool-calling data synthesis pipeline ToolFlow. Data quality assessments demonstrate improvements in the naturalness and coherence of our synthesized dialogues. Finally, we apply SFT on LLaMA-3.1-8B using 8,000 synthetic dialogues generated with ToolFlow. Results show that the model achieves tool-calling performance comparable to or even surpassing GPT-4, while maintaining strong general capabilities.