Abstract:Retrieval-augmented generation (RAG) is a framework enabling large language models (LLMs) to enhance their accuracy and reduce hallucinations by integrating external knowledge bases. In this paper, we introduce a hybrid RAG system enhanced through a comprehensive suite of optimizations that significantly improve retrieval quality, augment reasoning capabilities, and refine numerical computation ability. We refined the text chunks and tables in web pages, added attribute predictors to reduce hallucinations, conducted LLM Knowledge Extractor and Knowledge Graph Extractor, and finally built a reasoning strategy with all the references. We evaluated our system on the CRAG dataset through the Meta CRAG KDD Cup 2024 Competition. Both the local and online evaluations demonstrate that our system significantly enhances complex reasoning capabilities. In local evaluations, we have significantly improved accuracy and reduced error rates compared to the baseline model, achieving a notable increase in scores. In the meanwhile, we have attained outstanding results in online assessments, demonstrating the performance and generalization capabilities of the proposed system. The source code for our system is released in \url{https://gitlab.aicrowd.com/shizueyy/crag-new}.
Abstract:We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.