Abstract:We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
Abstract:Recently, flow matching based speech synthesis has significantly enhanced the quality of synthesized speech while reducing the number of inference steps. In this paper, we introduce SlimSpeech, a lightweight and efficient speech synthesis system based on rectified flow. We have built upon the existing speech synthesis method utilizing the rectified flow model, modifying its structure to reduce parameters and serve as a teacher model. By refining the reflow operation, we directly derive a smaller model with a more straight sampling trajectory from the larger model, while utilizing distillation techniques to further enhance the model performance. Experimental results demonstrate that our proposed method, with significantly reduced model parameters, achieves comparable performance to larger models through one-step sampling.
Abstract:Personalized image generation aims to produce images of user-specified concepts while enabling flexible editing. Recent training-free approaches, while exhibit higher computational efficiency than training-based methods, struggle with identity preservation, applicability, and compatibility with diffusion transformers (DiTs). In this paper, we uncover the untapped potential of DiT, where simply replacing denoising tokens with those of a reference subject achieves zero-shot subject reconstruction. This simple yet effective feature injection technique unlocks diverse scenarios, from personalization to image editing. Building upon this observation, we propose \textbf{Personalize Anything}, a training-free framework that achieves personalized image generation in DiT through: 1) timestep-adaptive token replacement that enforces subject consistency via early-stage injection and enhances flexibility through late-stage regularization, and 2) patch perturbation strategies to boost structural diversity. Our method seamlessly supports layout-guided generation, multi-subject personalization, and mask-controlled editing. Evaluations demonstrate state-of-the-art performance in identity preservation and versatility. Our work establishes new insights into DiTs while delivering a practical paradigm for efficient personalization.
Abstract:In recent years, large language models (LLMs) have demonstrated remarkable potential across various medical applications. Building on this foundation, multimodal large language models (MLLMs) integrate LLMs with visual models to process diverse inputs, including clinical data and medical images. In ophthalmology, LLMs have been explored for analyzing optical coherence tomography (OCT) reports, assisting in disease classification, and even predicting treatment outcomes. However, existing MLLM benchmarks often fail to capture the complexities of real-world clinical practice, particularly in the analysis of OCT images. Many suffer from limitations such as small sample sizes, a lack of diverse OCT datasets, and insufficient expert validation. These shortcomings hinder the accurate assessment of MLLMs' ability to interpret OCT scans and their broader applicability in ophthalmology. Our dataset, curated through rigorous quality control and expert annotation, consists of 439 fundus images and 75 OCT images. Using a standardized API-based framework, we assessed seven mainstream MLLMs and observed significant variability in diagnostic accuracy across different diseases. While some models performed well in diagnosing conditions such as diabetic retinopathy and age-related macular degeneration, they struggled with others, including choroidal neovascularization and myopia, highlighting inconsistencies in performance and the need for further refinement. Our findings emphasize the importance of developing clinically relevant benchmarks to provide a more accurate assessment of MLLMs' capabilities. By refining these models and expanding their scope, we can enhance their potential to transform ophthalmic diagnosis and treatment.
Abstract:Social surveys in computational social science are well-designed by elaborate domain theories that can effectively reflect the interviewee's deep thoughts without concealing their true feelings. The candidate questionnaire options highly depend on the interviewee's previous answer, which results in the complexity of social survey analysis, the time, and the expertise required. The ability of large language models (LLMs) to perform complex reasoning is well-enhanced by prompting learning such as Chain-of-thought (CoT) but still confined to left-to-right decision-making processes or limited paths during inference. This means they can fall short in problems that require exploration and uncertainty searching. In response, a novel large language model prompting method, called Random Forest of Thoughts (RFoT), is proposed for generating uncertainty reasoning to fit the area of computational social science. The RFoT allows LLMs to perform deliberate decision-making by generating diverse thought space and randomly selecting the sub-thoughts to build the forest of thoughts. It can extend the exploration and prediction of overall performance, benefiting from the extensive research space of response. The method is applied to optimize computational social science analysis on two datasets covering a spectrum of social survey analysis problems. Our experiments show that RFoT significantly enhances language models' abilities on two novel social survey analysis problems requiring non-trivial reasoning.
Abstract:The growing demand for data privacy in Machine Learning (ML) applications has seen Machine Unlearning (MU) emerge as a critical area of research. As the `right to be forgotten' becomes regulated globally, it is increasingly important to develop mechanisms that delete user data from AI systems while maintaining performance and scalability of these systems. Incremental Unlearning (IU) is a promising MU solution to address the challenges of efficiently removing specific data from ML models without the need for expensive and time-consuming full retraining. This paper presents the various techniques and approaches to IU. It explores the challenges faced in designing and implementing IU mechanisms. Datasets and metrics for evaluating the performance of unlearning techniques are discussed as well. Finally, potential solutions to the IU challenges alongside future research directions are offered. This survey provides valuable insights for researchers and practitioners seeking to understand the current landscape of IU and its potential for enhancing privacy-preserving intelligent systems.
Abstract:Today's open vocabulary scene graph generation (OVSGG) extends traditional SGG by recognizing novel objects and relationships beyond predefined categories, leveraging the knowledge from pre-trained large-scale models. Most existing methods adopt a two-stage pipeline: weakly supervised pre-training with image captions and supervised fine-tuning (SFT) on fully annotated scene graphs. Nonetheless, they omit explicit modeling of interacting objects and treat all objects equally, resulting in mismatched relation pairs. To this end, we propose an interaction-aware OVSGG framework INOVA. During pre-training, INOVA employs an interaction-aware target generation strategy to distinguish interacting objects from non-interacting ones. In SFT, INOVA devises an interaction-guided query selection tactic to prioritize interacting objects during bipartite graph matching. Besides, INOVA is equipped with an interaction-consistent knowledge distillation to enhance the robustness by pushing interacting object pairs away from the background. Extensive experiments on two benchmarks (VG and GQA) show that INOVA achieves state-of-the-art performance, demonstrating the potential of interaction-aware mechanisms for real-world applications.
Abstract:Multimodal AI Agents are AI models that have the capability of interactively and cooperatively assisting human users to solve day-to-day tasks. Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks by providing egocentric multimodal (audio and video) observational capabilities to AI Agents. Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users. Existing AI Agents, either Large Language Models (LLMs) or Multimodal Vision-Language Models (VLMs) are reactive in nature, which means that models cannot take an action without reading or listening to the human user's prompts. Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks, encourage users when they do tasks correctly or simply engage in conversation with the user - akin to a human teaching or assisting a user. Our proposed YET to Intervene (YETI) multimodal agent focuses on the research question of identifying circumstances that may require the agent to intervene proactively. This allows the agent to understand when it can intervene in a conversation with human users that can help the user correct mistakes on tasks, like cooking, using AR. Our YETI Agent learns scene understanding signals based on interpretable notions of Structural Similarity (SSIM) on consecutive video frames. We also define the alignment signal which the AI Agent can learn to identify if the video frames corresponding to the user's actions on the task are consistent with expected actions. These signals are used by our AI Agent to determine when it should proactively intervene. We compare our results on the instances of proactive intervention in the HoloAssist multimodal benchmark for an expert agent guiding a user to complete procedural tasks.
Abstract:AI-synthesized voice technology has the potential to create realistic human voices for beneficial applications, but it can also be misused for malicious purposes. While existing AI-synthesized voice detection models excel in intra-domain evaluation, they face challenges in generalizing across different domains, potentially becoming obsolete as new voice generators emerge. Current solutions use diverse data and advanced machine learning techniques (e.g., domain-invariant representation, self-supervised learning), but are limited by predefined vocoders and sensitivity to factors like background noise and speaker identity. In this work, we introduce an innovative disentanglement framework aimed at extracting domain-agnostic artifact features related to vocoders. Utilizing these features, we enhance model learning in a flat loss landscape, enabling escape from suboptimal solutions and improving generalization. Extensive experiments on benchmarks show our approach outperforms state-of-the-art methods, achieving up to 5.12% improvement in the equal error rate metric in intra-domain and 7.59% in cross-domain evaluations.
Abstract:In response to the growing threat of deepfake technology, we introduce BENet, a Cross-Domain Robust Bias Expansion Network. BENet enhances the detection of fake faces by addressing limitations in current detectors related to variations across different types of fake face generation techniques, where ``cross-domain" refers to the diverse range of these deepfakes, each considered a separate domain. BENet's core feature is a bias expansion module based on autoencoders. This module maintains genuine facial features while enhancing differences in fake reconstructions, creating a reliable bias for detecting fake faces across various deepfake domains. We also introduce a Latent-Space Attention (LSA) module to capture inconsistencies related to fake faces at different scales, ensuring robust defense against advanced deepfake techniques. The enriched LSA feature maps are multiplied with the expanded bias to create a versatile feature space optimized for subtle forgeries detection. To improve its ability to detect fake faces from unknown sources, BENet integrates a cross-domain detector module that enhances recognition accuracy by verifying the facial domain during inference. We train our network end-to-end with a novel bias expansion loss, adopted for the first time, in face forgery detection. Extensive experiments covering both intra and cross-dataset demonstrate BENet's superiority over current state-of-the-art solutions.