Kent State University
Abstract:Recently, large language models (LLMs) have demonstrated superior performance across various tasks by adhering to scaling laws, which significantly increase model size. However, the huge computation overhead during inference hinders the deployment in industrial applications. Many works leverage traditional compression approaches to boost model inference, but these always introduce additional training costs to restore the performance and the pruning results typically show noticeable performance drops compared to the original model when aiming for a specific level of acceleration. To address these issues, we propose a fine-grained token-wise pruning approach for the LLMs, which presents a learnable router to adaptively identify the less important tokens and skip them across model blocks to reduce computational cost during inference. To construct the router efficiently, we present a search-based sparsity scheduler for pruning sparsity allocation, a trainable router combined with our proposed four low-dimensional factors as input and three proposed losses. We conduct extensive experiments across different benchmarks on different LLMs to demonstrate the superiority of our method. Our approach achieves state-of-the-art (SOTA) pruning results, surpassing other existing pruning methods. For instance, our method outperforms BlockPruner and ShortGPT by approximately 10 points on both LLaMA2-7B and Qwen1.5-7B in accuracy retention at comparable token sparsity levels.
Abstract:Binary Neural Networks (BNNs) have garnered significant attention due to their immense potential for deployment on edge devices. However, the non-differentiability of the quantization function poses a challenge for the optimization of BNNs, as its derivative cannot be backpropagated. To address this issue, hypernetwork based methods, which utilize neural networks to learn the gradients of non-differentiable quantization functions, have emerged as a promising approach due to their adaptive learning capabilities to reduce estimation errors. However, existing hypernetwork based methods typically rely solely on current gradient information, neglecting the influence of historical gradients. This oversight can lead to accumulated gradient errors when calculating gradient momentum during optimization. To incorporate historical gradient information, we design a Historical Gradient Storage (HGS) module, which models the historical gradient sequence to generate the first-order momentum required for optimization. To further enhance gradient generation in hypernetworks, we propose a Fast and Slow Gradient Generation (FSG) method. Additionally, to produce more precise gradients, we introduce Layer Recognition Embeddings (LRE) into the hypernetwork, facilitating the generation of layer-specific fine gradients. Extensive comparative experiments on the CIFAR-10 and CIFAR-100 datasets demonstrate that our method achieves faster convergence and lower loss values, outperforming existing baselines.Code is available at http://github.com/two-tiger/FSG .
Abstract:Occupancy Network has recently attracted much attention in autonomous driving. Instead of monocular 3D detection and recent bird's eye view(BEV) models predicting 3D bounding box of obstacles, Occupancy Network predicts the category of voxel in specified 3D space around the ego vehicle via transforming 3D detection task into 3D voxel segmentation task, which has much superiority in tackling category outlier obstacles and providing fine-grained 3D representation. However, existing methods usually require huge computation resources than previous methods, which hinder the Occupancy Network solution applying in intelligent driving systems. To address this problem, we make an analysis of the bottleneck of Occupancy Network inference cost, and present a simple and fast Occupancy Network model, which adopts a deformable 2D convolutional layer to lift BEV feature to 3D voxel feature and presents an efficient voxel feature pyramid network (FPN) module to improve performance with few computational cost. Further, we present a cost-free 2D segmentation branch in perspective view after feature extractors for Occupancy Network during inference phase to improve accuracy. Experimental results demonstrate that our method consistently outperforms existing methods in both accuracy and inference speed, which surpasses recent state-of-the-art (SOTA) OCCNet by 1.7% with ResNet50 backbone with about 3X inference speedup. Furthermore, our method can be easily applied to existing BEV models to transform them into Occupancy Network models.
Abstract:Most of current semantic communication (SemCom) frameworks focus on the image transmission, which, however, do not address the problem on how to deliver digital signals without any semantic features. This paper proposes a novel SemCom approach to transmit digital signals by using the image as the carrier signal. Specifically, the proposed approach encodes the digital signal as a binary stream and maps it to mask locations on an image. This allows binary data to be visually represented, enabling the use of existing model, pre-trained Masked Autoencoders (MAE), which are optimized for masked image reconstruction, as the SemCom encoder and decoder. Since MAE can both process and recover masked images, this approach allows for the joint transmission of digital signals and images without additional overhead. In addition, considering the mask tokens transmission encoded by the MAE still faces extra costs, we design a sparse encoding module at the transmitter to encode the mask tokens into a sparse matrix, and it can be recovered at the receiver. Thus, this approach simply needs to transmit the latent representations of the unmasked patches and a sparse matrix, which further reduce the transmission overhead compared with the original MAE encoder. Simulation results show that the approach maintains reliable transmission of digital signals and images even in a high mask ratio of transmitted images.
Abstract:Semantic communication (SemCom) has emerged as a promising technique for the next-generation communication systems, in which the generation at the receiver side is allowed without semantic features' recovery. However, the majority of existing research predominantly utilizes a singular type of semantic information, such as text, images, or speech, to supervise and choose the generated source signals, which may not sufficiently encapsulate the comprehensive and accurate semantic information, and thus creating a performance bottleneck. In order to bridge this gap, in this paper, we propose and investigate a multimodal information-aided SemCom framework (MMSemCom) for image transmission. To be specific, in this framework, we first extract semantic features at both the image and text levels utilizing the Convolutional Neural Network (CNN) architecture and the Contrastive Language-Image Pre-Training (CLIP) model before transmission. Then, we employ a generative diffusion model at the receiver to generate multiple images. In order to ensure the accurate extraction and facilitate high-fidelity image reconstruction, we select the "best" image with the minimum reconstruction errors by taking both the aided image and text semantic features into account. We further extend MMSemCom to the multiuser scenario for orthogonal transmission. Experimental results demonstrate that the proposed framework can not only achieve the enhanced fidelity and robustness in image transmission compared with existing communication systems but also sustain a high performance in the low signal-to-noise ratio (SNR) conditions.
Abstract:As an effective approach to equip models with multi-task capabilities without additional training, model merging has garnered significant attention. However, existing methods face challenges of redundant parameter conflicts and the excessive storage burden of parameters. In this work, through controlled experiments, we reveal that for task vectors, only those parameters with magnitudes above a certain threshold contribute positively to the task, exhibiting a pulse-like characteristic. We then attempt leveraging this characteristic to binarize the task vectors and reduce storage overhead. Further controlled experiments show that the binarized task vectors incur almost no decrease in fine-tuning and merging performance, and even exhibit stronger performance improvements as the proportion of redundant parameters increases. Based on these insights, we propose Task Switch (T-Switch), which decomposes task vectors into three components: 1) an activation switch instantiated by a binarized mask vector, 2) a polarity switch instantiated by a binarized sign vector, and 3) a scaling knob instantiated by a scalar coefficient. By storing task vectors in a binarized form, T-Switch alleviates parameter conflicts while ensuring efficient task parameter storage. Furthermore, to enable automated switch combination in T-Switch, we further introduce Auto-Switch, which enables training-free switch combination via retrieval from a small query set. Experiments indicate that our methods achieve significant performance improvements over existing baselines, requiring only 1-3% of the storage space of full-precision parameters.
Abstract:Domain generalization on graphs aims to develop models with robust generalization capabilities, ensuring effective performance on the testing set despite disparities between testing and training distributions. However, existing methods often rely on static encoders directly applied to the target domain, constraining its flexible adaptability. In contrast to conventional methodologies, which concentrate on developing specific generalized models, our framework, MLDGG, endeavors to achieve adaptable generalization across diverse domains by integrating cross-multi-domain meta-learning with structure learning and semantic identification. Initially, it introduces a generalized structure learner to mitigate the adverse effects of task-unrelated edges, enhancing the comprehensiveness of representations learned by Graph Neural Networks (GNNs) while capturing shared structural information across domains. Subsequently, a representation learner is designed to disentangle domain-invariant semantic and domain-specific variation information in node embedding by leveraging causal reasoning for semantic identification, further enhancing generalization. In the context of meta-learning, meta-parameters for both learners are optimized to facilitate knowledge transfer and enable effective adaptation to graphs through fine-tuning within the target domains, where target graphs are inaccessible during training. Our empirical results demonstrate that MLDGG surpasses baseline methods, showcasing its effectiveness in three different distribution shift settings.
Abstract:Incremental graph learning has gained significant attention for its ability to address the catastrophic forgetting problem in graph representation learning. However, traditional methods often rely on a large number of labels for node classification, which is impractical in real-world applications. This makes few-shot incremental learning on graphs a pressing need. Current methods typically require extensive training samples from meta-learning to build memory and perform intensive fine-tuning of GNN parameters, leading to high memory consumption and potential loss of previously learned knowledge. To tackle these challenges, we introduce Mecoin, an efficient method for building and maintaining memory. Mecoin employs Structured Memory Units to cache prototypes of learned categories, as well as Memory Construction Modules to update these prototypes for new categories through interactions between the nodes and the cached prototypes. Additionally, we have designed a Memory Representation Adaptation Module to store probabilities associated with each class prototype, reducing the need for parameter fine-tuning and lowering the forgetting rate. When a sample matches its corresponding class prototype, the relevant probabilities are retrieved from the MRaM. Knowledge is then distilled back into the GNN through a Graph Knowledge Distillation Module, preserving the model's memory. We analyze the effectiveness of Mecoin in terms of generalization error and explore the impact of different distillation strategies on model performance through experiments and VC-dimension analysis. Compared to other related works, Mecoin shows superior performance in accuracy and forgetting rate. Our code is publicly available on the https://github.com/Arvin0313/Mecoin-GFSCIL.git .
Abstract:With the development of artificial intelligence, its contribution to science is evolving from simulating a complex problem to automating entire research processes and producing novel discoveries. Achieving this advancement requires both specialized general models grounded in real-world scientific data and iterative, exploratory frameworks that mirror human scientific methodologies. In this paper, we present PROTEUS, a fully automated system for scientific discovery from raw proteomics data. PROTEUS uses large language models (LLMs) to perform hierarchical planning, execute specialized bioinformatics tools, and iteratively refine analysis workflows to generate high-quality scientific hypotheses. The system takes proteomics datasets as input and produces a comprehensive set of research objectives, analysis results, and novel biological hypotheses without human intervention. We evaluated PROTEUS on 12 proteomics datasets collected from various biological samples (e.g. immune cells, tumors) and different sample types (single-cell and bulk), generating 191 scientific hypotheses. These were assessed using both automatic LLM-based scoring on 5 metrics and detailed reviews from human experts. Results demonstrate that PROTEUS consistently produces reliable, logically coherent results that align well with existing literature while also proposing novel, evaluable hypotheses. The system's flexible architecture facilitates seamless integration of diverse analysis tools and adaptation to different proteomics data types. By automating complex proteomics analysis workflows and hypothesis generation, PROTEUS has the potential to considerably accelerate the pace of scientific discovery in proteomics research, enabling researchers to efficiently explore large-scale datasets and uncover biological insights.
Abstract:Recommender systems have become increasingly important with the rise of the web as a medium for electronic and business transactions. One of the key drivers of this technology is the ease with which users can provide feedback about their likes and dislikes through simple clicks of a mouse. This feedback is commonly collected in the form of ratings, but can also be inferred from a user's browsing and purchasing history. Recommender systems utilize users' historical data to infer customer interests and provide personalized recommendations. The basic principle of recommendations is that significant dependencies exist between user- and item-centric activity, which can be learned in a data-driven manner to make accurate predictions. Collaborative filtering is one family of recommendation algorithms that uses ratings from multiple users to predict missing ratings or uses binary click information to predict potential clicks. However, recommender systems can be more complex and incorporate auxiliary data such as content-based attributes, user interactions, and contextual information.