Abstract:Legal judgments may contain errors due to the complexity of case circumstances and the abstract nature of legal concepts, while existing appellate review mechanisms face efficiency pressures from a surge in case volumes. Although current legal AI research focuses on tasks like judgment prediction and legal document generation, the task of judgment review differs fundamentally in its objectives and paradigm: it centers on detecting, classifying, and correcting errors after a judgment is issued, constituting anomaly detection rather than prediction or generation. To address this research gap, we introduce a novel task APPELLATE REVIEW, aiming to assess models' diagnostic reasoning and reliability in legal practice. We also construct a novel dataset benchmark AR-BENCH, which comprises 8,700 finely annotated decisions and 34,617 supplementary corpora. By evaluating 14 large language models, we reveal critical limitations in existing models' ability to identify legal application errors, providing empirical evidence for future improvements.
Abstract:Structural missingness breaks 'just impute and train': values can be undefined by causal or logical constraints, and the mask may depend on observed variables, unobserved variables (MNAR), and other missingness indicators. It simultaneously brings (i) a catch-22 situation with causal loop, prediction needs the missing features, yet inferring them depends on the missingness mechanism, (ii) under MNAR, the unseen are different, the missing part can come from a shifted distribution, and (iii) plug-in imputation, a single fill-in can lock in uncertainty and yield overconfident, biased decisions. In the Bayesian view, prediction via the posterior predictive distribution integrates over the full model posterior uncertainty, rather than relying on a single point estimate. This framework decouples (i) learning an in-model missing-value posterior from (ii) label prediction by optimizing the predictive posterior distribution, enabling posterior integration. This decoupling yields an in-model almost-free-lunch: once the posterior is learned, prediction is plug-and-play while preserving uncertainty propagation. It achieves SOTA on 43 classification and 15 imputation benchmarks, with finite-sample near Bayes-optimality guarantees under our SCM prior.
Abstract:Charts are high-density visual carriers of complex data and medium for information extraction and analysis. Due to the need for precise and complex visual reasoning, automated chart understanding poses a significant challenge to existing Multimodal Large Language Models (MLLMs). Many MLLMs trained with reinforcement learning (RL) face the challenge of credit assignment. Their advantage estimation, typically performed at the trajectory level, cannot distinguish between correct and incorrect reasoning steps within a single generated response. To address this limitation, we introduce SketchVL, a novel MLLM that optimized with FinePO, a new RL algorithm designed for fine-grained credit assignment within each trajectory. SketchVL's methodology involves drawing its intermediate reasoning steps as markers on the image and feeding the annotated image back to itself, creating a robust, multi-step reasoning process. During training, the FinePO algorithm leverages a Fine-grained Process Reward Model (FinePRM) to score each drawing action within a trajectory, thereby precisely assigning credit for each step. This mechanism allows FinePO to more strongly reward correct tokens when a trajectory is globally successful, and more heavily penalize incorrect tokens when the trajectory is globally suboptimal, thus achieving fine-grained reinforcement signals. Experiments show that SketchVL learns to align its step-level behavior with the FinePRM, achieving an average performance gain of 7.23\% over its base model across chart datasets, natural image datasets, and mathematics, providing a promising new direction for training powerful reasoning models.
Abstract:Speech is a scalable and non-invasive biomarker for early mental health screening. However, widely used depression datasets like DAIC-WOZ exhibit strong coupling between linguistic sentiment and diagnostic labels, encouraging models to learn semantic shortcuts. As a result, model robustness may be compromised in real-world scenarios, such as Camouflaged Depression, where individuals maintain socially positive or neutral language despite underlying depressive states. To mitigate this semantic bias, we propose DepFlow, a three-stage depression-conditioned text-to-speech framework. First, a Depression Acoustic Encoder learns speaker- and content-invariant depression embeddings through adversarial training, achieving effective disentanglement while preserving depression discriminability (ROC-AUC: 0.693). Second, a flow-matching TTS model with FiLM modulation injects these embeddings into synthesis, enabling control over depressive severity while preserving content and speaker identity. Third, a prototype-based severity mapping mechanism provides smooth and interpretable manipulation across the depression continuum. Using DepFlow, we construct a Camouflage Depression-oriented Augmentation (CDoA) dataset that pairs depressed acoustic patterns with positive/neutral content from a sentiment-stratified text bank, creating acoustic-semantic mismatches underrepresented in natural data. Evaluated across three depression detection architectures, CDoA improves macro-F1 by 9%, 12%, and 5%, respectively, consistently outperforming conventional augmentation strategies in depression Detection. Beyond enhancing robustness, DepFlow provides a controllable synthesis platform for conversational systems and simulation-based evaluation, where real clinical data remains limited by ethical and coverage constraints.
Abstract:The accessibility surge and abuse risks of user-friendly image editing models have created an urgent need for generalizable, up-to-date methods for Image Manipulation Detection and Localization (IMDL). Current IMDL research typically uses cross-dataset evaluation, where models trained on one benchmark are tested on others. However, this simplified evaluation approach conceals the fragility of existing methods when handling diverse AI-generated content, leading to misleading impressions of progress. This paper challenges this illusion by proposing NeXT-IMDL, a large-scale diagnostic benchmark designed not just to collect data, but to probe the generalization boundaries of current detectors systematically. Specifically, NeXT-IMDL categorizes AIGC-based manipulations along four fundamental axes: editing models, manipulation types, content semantics, and forgery granularity. Built upon this, NeXT-IMDL implements five rigorous cross-dimension evaluation protocols. Our extensive experiments on 11 representative models reveal a critical insight: while these models perform well in their original settings, they exhibit systemic failures and significant performance degradation when evaluated under our designed protocols that simulate real-world, various generalization scenarios. By providing this diagnostic toolkit and the new findings, we aim to advance the development towards building truly robust, next-generation IMDL models.
Abstract:Ensemble learning of LLMs has emerged as a promising alternative to enhance performance, but existing approaches typically treat models as black boxes, combining the inputs or final outputs while overlooking the rich internal representations and interactions across models.In this work, we introduce LLMBoost, a novel ensemble fine-tuning framework that breaks this barrier by explicitly leveraging intermediate states of LLMs. Inspired by the boosting paradigm, LLMBoost incorporates three key innovations. First, a cross-model attention mechanism enables successor models to access and fuse hidden states from predecessors, facilitating hierarchical error correction and knowledge transfer. Second, a chain training paradigm progressively fine-tunes connected models with an error-suppression objective, ensuring that each model rectifies the mispredictions of its predecessor with minimal additional computation. Third, a near-parallel inference paradigm design pipelines hidden states across models layer by layer, achieving inference efficiency approaching single-model decoding. We further establish the theoretical foundations of LLMBoost, proving that sequential integration guarantees monotonic improvements under bounded correction assumptions. Extensive experiments on commonsense reasoning and arithmetic reasoning tasks demonstrate that LLMBoost consistently boosts accuracy while reducing inference latency.




Abstract:Learning-based methods have made significant progress in physics simulation, typically approximating dynamics with a monolithic end-to-end optimized neural network. Although these models offer an effective way to simulation, they may lose essential features compared to traditional numerical simulators, such as physical interpretability and reliability. Drawing inspiration from classical simulators that operate in a modular fashion, this paper presents Neural Modular Physics (NMP) for elastic simulation, which combines the approximation capacity of neural networks with the physical reliability of traditional simulators. Beyond the previous monolithic learning paradigm, NMP enables direct supervision of intermediate quantities and physical constraints by decomposing elastic dynamics into physically meaningful neural modules connected through intermediate physical quantities. With a specialized architecture and training strategy, our method transforms the numerical computation flow into a modular neural simulator, achieving improved physical consistency and generalizability. Experimentally, NMP demonstrates superior generalization to unseen initial conditions and resolutions, stable long-horizon simulation, better preservation of physical properties compared to other neural simulators, and greater feasibility in scenarios with unknown underlying dynamics than traditional simulators.
Abstract:The misuse of AI-driven video generation technologies has raised serious social concerns, highlighting the urgent need for reliable AI-generated video detectors. However, most existing methods are limited to binary classification and lack the necessary explanations for human interpretation. In this paper, we present Skyra, a specialized multimodal large language model (MLLM) that identifies human-perceivable visual artifacts in AI-generated videos and leverages them as grounded evidence for both detection and explanation. To support this objective, we construct ViF-CoT-4K for Supervised Fine-Tuning (SFT), which represents the first large-scale AI-generated video artifact dataset with fine-grained human annotations. We then develop a two-stage training strategy that systematically enhances our model's spatio-temporal artifact perception, explanation capability, and detection accuracy. To comprehensively evaluate Skyra, we introduce ViF-Bench, a benchmark comprising 3K high-quality samples generated by over ten state-of-the-art video generators. Extensive experiments demonstrate that Skyra surpasses existing methods across multiple benchmarks, while our evaluation yields valuable insights for advancing explainable AI-generated video detection.
Abstract:A cascaded online learning flight control system has been developed and enhanced with respect to action smoothness. In this paper, we investigate the convergence performance of the control system, characterized by the increment of a Lyapunov function candidate. The derivation of this metric accounts for discretization errors and state prediction errors introduced by the incremental model. Comparative results are presented through flight control simulations.




Abstract:Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.