Abstract:Due to the demand for personalizing image generation, subject-driven text-to-image generation method, which creates novel renditions of an input subject based on text prompts, has received growing research interest. Existing methods often learn subject representation and incorporate it into the prompt embedding to guide image generation, but they struggle with preserving subject fidelity. To solve this issue, this paper approaches a novel framework named SceneBooth for subject-preserved text-to-image generation, which consumes inputs of a subject image, object phrases and text prompts. Instead of learning the subject representation and generating a subject, our SceneBooth fixes the given subject image and generates its background image guided by the text prompts. To this end, our SceneBooth introduces two key components, i.e., a multimodal layout generation module and a background painting module. The former determines the position and scale of the subject by generating appropriate scene layouts that align with text captions, object phrases, and subject visual information. The latter integrates two adapters (ControlNet and Gated Self-Attention) into the latent diffusion model to generate a background that harmonizes with the subject guided by scene layouts and text descriptions. In this manner, our SceneBooth ensures accurate preservation of the subject's appearance in the output. Quantitative and qualitative experimental results demonstrate that SceneBooth significantly outperforms baseline methods in terms of subject preservation, image harmonization and overall quality.
Abstract:Domain generalization aims to learn a model from multiple training domains and generalize it to unseen test domains. Recent theory has shown that seeking the deep models, whose parameters lie in the flat minima of the loss landscape, can significantly reduce the out-of-domain generalization error. However, existing methods often neglect the consistency of loss landscapes in different domains, resulting in models that are not simultaneously in the optimal flat minima in all domains, which limits their generalization ability. To address this issue, this paper proposes an iterative Self-Feedback Training (SFT) framework to seek consistent flat minima that are shared across different domains by progressively refining loss landscapes during training. It alternatively generates a feedback signal by measuring the inconsistency of loss landscapes in different domains and refines these loss landscapes for greater consistency using this feedback signal. Benefiting from the consistency of the flat minima within these refined loss landscapes, our SFT helps achieve better out-of-domain generalization. Extensive experiments on DomainBed demonstrate superior performances of SFT when compared to state-of-the-art sharpness-aware methods and other prevalent DG baselines. On average across five DG benchmarks, SFT surpasses the sharpness-aware minimization by 2.6% with ResNet-50 and 1.5% with ViT-B/16, respectively. The code will be available soon.
Abstract:Continual learning endeavors to equip the model with the capability to integrate current task knowledge while mitigating the forgetting of past task knowledge. Inspired by prompt tuning, prompt-based methods maintain a frozen backbone and train with slight learnable prompts to minimize the catastrophic forgetting that arises due to updating a large number of backbone parameters. Nonetheless, these learnable prompts tend to concentrate on the discriminatory knowledge of the current task while ignoring past task knowledge, leading to that learnable prompts still suffering from catastrophic forgetting. This paper introduces a novel rehearsal-free paradigm for continual learning termed Hierarchical Prompts (H-Prompts), comprising three categories of prompts -- class prompt, task prompt, and general prompt. To effectively depict the knowledge of past classes, class prompt leverages Bayesian Distribution Alignment to model the distribution of classes in each task. To reduce the forgetting of past task knowledge, task prompt employs Cross-task Knowledge Excavation to amalgamate the knowledge encapsulated in the learned class prompts of past tasks and current task knowledge. Furthermore, general prompt utilizes Generalized Knowledge Exploration to deduce highly generalized knowledge in a self-supervised manner. Evaluations on two benchmarks substantiate the efficacy of the proposed H-Prompts, exemplified by an average accuracy of 87.8% in Split CIFAR-100 and 70.6% in Split ImageNet-R.
Abstract:Audio-visual video recognition (AVVR) aims to integrate audio and visual clues to categorize videos accurately. While existing methods train AVVR models using provided datasets and achieve satisfactory results, they struggle to retain historical class knowledge when confronted with new classes in real-world situations. Currently, there are no dedicated methods for addressing this problem, so this paper concentrates on exploring Class Incremental Audio-Visual Video Recognition (CIAVVR). For CIAVVR, since both stored data and learned model of past classes contain historical knowledge, the core challenge is how to capture past data knowledge and past model knowledge to prevent catastrophic forgetting. We introduce Hierarchical Augmentation and Distillation (HAD), which comprises the Hierarchical Augmentation Module (HAM) and Hierarchical Distillation Module (HDM) to efficiently utilize the hierarchical structure of data and models, respectively. Specifically, HAM implements a novel augmentation strategy, segmental feature augmentation, to preserve hierarchical model knowledge. Meanwhile, HDM introduces newly designed hierarchical (video-distribution) logical distillation and hierarchical (snippet-video) correlative distillation to capture and maintain the hierarchical intra-sample knowledge of each data and the hierarchical inter-sample knowledge between data, respectively. Evaluations on four benchmarks (AVE, AVK-100, AVK-200, and AVK-400) demonstrate that the proposed HAD effectively captures hierarchical information in both data and models, resulting in better preservation of historical class knowledge and improved performance. Furthermore, we provide a theoretical analysis to support the necessity of the segmental feature augmentation strategy.
Abstract:A number of deep models trained on high-quality and valuable images have been deployed in practical applications, which may pose a leakage risk of data privacy. Learning differentially private generative models can sidestep this challenge through indirect data access. However, such differentially private generative models learned by existing approaches can only generate images with a low-resolution of less than 128x128, hindering the widespread usage of generated images in downstream training. In this work, we propose learning differentially private probabilistic models (DPPM) to generate high-resolution images with differential privacy guarantee. In particular, we first train a model to fit the distribution of the training data and make it satisfy differential privacy by performing a randomized response mechanism during training process. Then we perform Hamiltonian dynamics sampling along with the differentially private movement direction predicted by the trained probabilistic model to obtain the privacy-preserving images. In this way, it is possible to apply these images to different downstream tasks while protecting private information. Notably, compared to other state-of-the-art differentially private generative approaches, our approach can generate images up to 256x256 with remarkable visual quality and data utility. Extensive experiments show the effectiveness of our approach.
Abstract:Automatic layout generation that can synthesize high-quality layouts is an important tool for graphic design in many applications. Though existing methods based on generative models such as Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) have progressed, they still leave much room for improving the quality and diversity of the results. Inspired by the recent success of diffusion models in generating high-quality images, this paper explores their potential for conditional layout generation and proposes Transformer-based Layout Diffusion Model (LayoutDM) by instantiating the conditional denoising diffusion probabilistic model (DDPM) with a purely transformer-based architecture. Instead of using convolutional neural networks, a transformer-based conditional Layout Denoiser is proposed to learn the reverse diffusion process to generate samples from noised layout data. Benefitting from both transformer and DDPM, our LayoutDM is of desired properties such as high-quality generation, strong sample diversity, faithful distribution coverage, and stationary training in comparison to GANs and VAEs. Quantitative and qualitative experimental results show that our method outperforms state-of-the-art generative models in terms of quality and diversity.
Abstract:Temporal action detection (TAD) aims to locate and recognize the actions in an untrimmed video. Anchor-free methods have made remarkable progress which mainly formulate TAD into two tasks: classification and localization using two separate branches. This paper reveals the temporal misalignment between the two tasks hindering further progress. To address this, we propose a new method that gives insights into moment and region perspectives simultaneously to align the two tasks by acquiring reliable proposal quality. For the moment perspective, Boundary Evaluate Module (BEM) is designed which focuses on local appearance and motion evolvement to estimate boundary quality and adopts a multi-scale manner to deal with varied action durations. For the region perspective, we introduce Region Evaluate Module (REM) which uses a new and efficient sampling method for proposal feature representation containing more contextual information compared with point feature to refine category score and proposal boundary. The proposed Boundary Evaluate Module and Region Evaluate Module (BREM) are generic, and they can be easily integrated with other anchor-free TAD methods to achieve superior performance. In our experiments, BREM is combined with two different frameworks and improves the performance on THUMOS14 by 3.6$\%$ and 1.0$\%$ respectively, reaching a new state-of-the-art (63.6$\%$ average $m$AP). Meanwhile, a competitive result of 36.2\% average $m$AP is achieved on ActivityNet-1.3 with the consistent improvement of BREM.
Abstract:Automating the Key Information Extraction (KIE) from documents improves efficiency, productivity, and security in many industrial scenarios such as rapid indexing and archiving. Many existing supervised learning methods for the KIE task need to feed a large number of labeled samples and learn separate models for different types of documents. However, collecting and labeling a large dataset is time-consuming and is not a user-friendly requirement for many cloud platforms. To overcome these challenges, we propose a deep end-to-end trainable network for one-shot KIE using partial graph matching. Contrary to previous methods that the learning of similarity and solving are optimized separately, our method enables the learning of the two processes in an end-to-end framework. Existing one-shot KIE methods are either template or simple attention-based learning approach that struggle to handle texts that are shifted beyond their desired positions caused by printers, as illustrated in Fig.1. To solve this problem, we add one-to-(at most)-one constraint such that we will find the globally optimized solution even if some texts are drifted. Further, we design a multimodal context ensemble block to boost the performance through fusing features of spatial, textual, and aspect representations. To promote research of KIE, we collected and annotated a one-shot document KIE dataset named DKIE with diverse types of images. The DKIE dataset consists of 2.5K document images captured by mobile phones in natural scenes, and it is the largest available one-shot KIE dataset up to now. The results of experiments on DKIE show that our method achieved state-of-the-art performance compared with recent one-shot and supervised learning approaches. The dataset and proposed one-shot KIE model will be released soo
Abstract:Efficient learning in the environment with sparse rewards is one of the most important challenges in Deep Reinforcement Learning (DRL). In continuous DRL environments such as robotic arms control, Hindsight Experience Replay (HER) has been shown an effective solution. However, due to the brittleness of deterministic methods, HER and its variants typically suffer from a major challenge for stability and convergence, which significantly affects the final performance. This challenge severely limits the applicability of such methods to complex real-world domains. To tackle this challenge, in this paper, we propose Soft Hindsight Experience Replay (SHER), a novel approach based on HER and Maximum Entropy Reinforcement Learning (MERL), combining the failed experiences reuse and maximum entropy probabilistic inference model. We evaluate SHER on Open AI Robotic manipulation tasks with sparse rewards. Experimental results show that, in contrast to HER and its variants, our proposed SHER achieves state-of-the-art performance, especially in the difficult HandManipulation tasks. Furthermore, our SHER method is more stable, achieving very similar performance across different random seeds.
Abstract:In the literature, most existing graph-based semi-supervised learning (SSL) methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the Low-Rank Representation (LRR), and propose a novel semi-supervised graph learning method called Semi-Supervised Low-Rank Representation (SSLRR). This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real datasets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.