Abstract:Due to the impressive zero-shot capabilities, pre-trained vision-language models (e.g. CLIP), have attracted widespread attention and adoption across various domains. Nonetheless, CLIP has been observed to be susceptible to adversarial examples. Through experimental analysis, we have observed a phenomenon wherein adversarial perturbations induce shifts in text-guided attention. Building upon this observation, we propose a simple yet effective strategy: __Text-Guided Attention for Zero-Shot Robustness (TGA-ZSR)__. This framework incorporates two components: the Attention Refinement module and the Attention-based Model Constraint module. Our goal is to maintain the generalization of the CLIP model and enhance its adversarial robustness: The Attention Refinement module aligns the text-guided attention obtained from the target model via adversarial examples with the text-guided attention acquired from the original model via clean examples. This alignment enhances the model's robustness. Additionally, the Attention-based Model Constraint module acquires text-guided attention from both the target and original models using clean examples. Its objective is to maintain model performance on clean samples while enhancing overall robustness. The experiments validate that our method yields a 9.58\% enhancement in zero-shot robust accuracy over the current state-of-the-art techniques across 16 datasets. __Our code is available at__ https://github.com/zhyblue424/TGA-ZSR.
Abstract:The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on specific models, difficulties in understanding and visualization, as well as issues related to efficiency. To address these limitations, we propose a novel framework called Med-MICN (Medical Multi-dimensional Interpretable Concept Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning, concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept labeling process that reduces the need for extensive human training effort when working with new datasets. To demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our Med-MICN.
Abstract:Currently, attention mechanisms have garnered increasing attention in Graph Neural Networks (GNNs), such as Graph Attention Networks (GATs) and Graph Transformers (GTs). It is not only due to the commendable boost in performance they offer but also its capacity to provide a more lucid rationale for model behaviors, which are often viewed as inscrutable. However, Attention-based GNNs have demonstrated instability in interpretability when subjected to various sources of perturbations during both training and testing phases, including factors like additional edges or nodes. In this paper, we propose a solution to this problem by introducing a novel notion called Faithful Graph Attention-based Interpretation (FGAI). In particular, FGAI has four crucial properties regarding stability and sensitivity to interpretation and final output distribution. Built upon this notion, we propose an efficient methodology for obtaining FGAI, which can be viewed as an ad hoc modification to the canonical Attention-based GNNs. To validate our proposed solution, we introduce two novel metrics tailored for graph interpretation assessment. Experimental results demonstrate that FGAI exhibits superior stability and preserves the interpretability of attention under various forms of perturbations and randomness, which makes FGAI a more faithful and reliable explanation tool.
Abstract:Deep neural networks (DNNs) excel on fixed datasets but struggle with incremental and shifting data in real-world scenarios. Continual learning addresses this challenge by allowing models to learn from new data while retaining previously learned knowledge. Existing methods mainly rely on visual features, often neglecting the rich semantic information encoded in text. The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes. Consequently, effectively leveraging this information throughout continual learning is expected to be beneficial. To address this, we propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings. We start from a pre-trained CLIP model, employ the \emph{Semantically-guided Representation Learning (SG-RL)} module for a soft-assignment towards all current task classes, and use the Semantically-guided Knowledge Distillation (SG-KD) module for enhanced knowledge transfer. Experimental results demonstrate the superiority of our method on general and fine-grained datasets. Our code can be found in https://github.com/aprilsveryown/semantically-guided-continual-learning.
Abstract:Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs heavily relies on the accuracy and richness of annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 20% labeled data, we achieved 93.19% (96.39% in a fully supervised setting) concept accuracy and 75.51% (79.82% in a fully supervised setting) prediction accuracy.
Abstract:Prompt tuning based on Context Optimization (CoOp) effectively adapts visual-language models (VLMs) to downstream tasks by inferring additional learnable prompt tokens. However, these tokens are less discriminative as they are independent of the pre-trained tokens and fail to capture input-specific knowledge, such as class-aware textual or instance-aware visual knowledge. Leveraging the discriminative and generalization capabilities inherent in pre-trained tokens, we introduce a novel approach named Self-Enhanced Prompt Tuning (SEP). The core principle of SEP involves adapting the learnable prompt tokens at each encoder layer from the corresponding self-pretrained tokens, thereby explicitly incorporating discriminative prior knowledge to enhance both textual-level and visual-level embeddings. Furthermore, SEP's self-enhanced tokens not only boost discrimination but also mitigate domain shifts in unseen domains, enhancing generalization. In practice, SEP selects several representative tokens from all pre-trained tokens for each input data at every layer of the text/visual encoders. Subsequently, a Token Fusion Module (TFM) is introduced to generate a self-enhanced token by merging these representative tokens with the learnable tokens using a cross-attention mechanism. This self-enhanced token is then concatenated with all pre-trained tokens, serving as input for subsequent encoder layers to produce the relevant embeddings. Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning. Code: \href{Code}{https://github.com/htyao89/SEP}.
Abstract:Multi-hop Question Answering (MQA) under knowledge editing (KE) is a key challenge in Large Language Models (LLMs). While best-performing solutions in this domain use a plan and solve paradigm to split a question into sub-questions followed by response generation, we claim that this approach is sub-optimal as it fails for hard to decompose questions, and it does not explicitly cater to correlated knowledge updates resulting as a consequence of knowledge edits. This has a detrimental impact on the overall consistency of the updated knowledge. To address these issues, in this paper, we propose a novel framework named RULE-KE, i.e., RULE based Knowledge Editing, which is a cherry on the top for augmenting the performance of all existing MQA methods under KE. Specifically, RULE-KE leverages rule discovery to discover a set of logical rules. Then, it uses these discovered rules to update knowledge about facts highly correlated with the edit. Experimental evaluation using existing and newly curated datasets (i.e., RKE-EVAL) shows that RULE-KE helps augment both performances of parameter-based and memory-based solutions up to 92% and 112.9%, respectively.
Abstract:In this paper, we explore sampling from strongly log-concave distributions defined on convex and compact supports. We propose a general proximal framework that involves projecting onto the constrained set, which is highly flexible and supports various projection options. Specifically, we consider the cases of Euclidean and Gauge projections, with the latter having the advantage of being performed efficiently using a membership oracle. This framework can be seamlessly integrated with multiple sampling methods. Our analysis focuses on Langevin-type sampling algorithms within the context of constrained sampling. We provide nonasymptotic upper bounds on the W1 and W2 errors, offering a detailed comparison of the performance of these methods in constrained sampling.
Abstract:The emergence of Neural Radiance Fields (NeRF) has greatly impacted 3D scene modeling and novel-view synthesis. As a kind of visual media for 3D scene representation, compression with high rate-distortion performance is an eternal target. Motivated by advances in neural compression and neural field representation, we propose NeRFCodec, an end-to-end NeRF compression framework that integrates non-linear transform, quantization, and entropy coding for memory-efficient scene representation. Since training a non-linear transform directly on a large scale of NeRF feature planes is impractical, we discover that pre-trained neural 2D image codec can be utilized for compressing the features when adding content-specific parameters. Specifically, we reuse neural 2D image codec but modify its encoder and decoder heads, while keeping the other parts of the pre-trained decoder frozen. This allows us to train the full pipeline via supervision of rendering loss and entropy loss, yielding the rate-distortion balance by updating the content-specific parameters. At test time, the bitstreams containing latent code, feature decoder head, and other side information are transmitted for communication. Experimental results demonstrate our method outperforms existing NeRF compression methods, enabling high-quality novel view synthesis with a memory budget of 0.5 MB.
Abstract:Large language models (LLMs) have shown exceptional abilities for multiple different natural language processing tasks. While prompting is a crucial tool for LLM inference, we observe that there is a significant cost associated with exceedingly lengthy prompts. Existing attempts to compress lengthy prompts lead to sub-standard results in terms of readability and interpretability of the compressed prompt, with a detrimental impact on prompt utility. To address this, we propose PROMPT-SAW: Prompt compresSion via Relation AWare graphs, an effective strategy for prompt compression over task-agnostic and task-aware prompts. PROMPT-SAW uses the prompt's textual information to build a graph, later extracts key information elements in the graph to come up with the compressed prompt. We also propose GSM8K-AUG, i.e., an extended version of the existing GSM8k benchmark for task-agnostic prompts in order to provide a comprehensive evaluation platform. Experimental evaluation using benchmark datasets shows that prompts compressed by PROMPT-SAW are not only better in terms of readability, but they also outperform the best-performing baseline models by up to 14.3 and 13.7 respectively for task-aware and task-agnostic settings while compressing the original prompt text by 33.0 and 56.7.