Score-based diffusion models have emerged as powerful tools in generative modeling, yet their theoretical foundations remain underexplored. In this work, we focus on the Wasserstein convergence analysis of score-based diffusion models. Specifically, we investigate the impact of various discretization schemes, including Euler discretization, exponential integrators, and midpoint randomization methods. Our analysis provides a quantitative comparison of these discrete approximations, emphasizing their influence on convergence behavior. Furthermore, we explore scenarios where Hessian information is available and propose an accelerated sampler based on the local linearization method. We demonstrate that this Hessian-based approach achieves faster convergence rates of order $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon}\right)$ significantly improving upon the standard rate $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon^2}\right)$ of vanilla diffusion models, where $\varepsilon$ denotes the target accuracy.