Abstract:Large Language Models (LLMs) are increasingly employed for simulations, enabling applications in role-playing agents and Computational Social Science (CSS). However, the reliability of these simulations is under-explored, which raises concerns about the trustworthiness of LLMs in these applications. In this paper, we aim to answer ``How reliable is LLM-based simulation?'' To address this, we introduce TrustSim, an evaluation dataset covering 10 CSS-related topics, to systematically investigate the reliability of the LLM simulation. We conducted experiments on 14 LLMs and found that inconsistencies persist in the LLM-based simulated roles. In addition, the consistency level of LLMs does not strongly correlate with their general performance. To enhance the reliability of LLMs in simulation, we proposed Adaptive Learning Rate Based ORPO (AdaORPO), a reinforcement learning-based algorithm to improve the reliability in simulation across 7 LLMs. Our research provides a foundation for future studies to explore more robust and trustworthy LLM-based simulations.
Abstract:Biomedical image segmentation is crucial for accurately diagnosing and analyzing various diseases. However, Convolutional Neural Networks (CNNs) and Transformers, the most commonly used architectures for this task, struggle to effectively capture long-range dependencies due to the inherent locality of CNNs and the computational complexity of Transformers. To address this limitation, we introduce TTT-Unet, a novel framework that integrates Test-Time Training (TTT) layers into the traditional U-Net architecture for biomedical image segmentation. TTT-Unet dynamically adjusts model parameters during the testing time, enhancing the model's ability to capture both local and long-range features. We evaluate TTT-Unet on multiple medical imaging datasets, including 3D abdominal organ segmentation in CT and MR images, instrument segmentation in endoscopy images, and cell segmentation in microscopy images. The results demonstrate that TTT-Unet consistently outperforms state-of-the-art CNN-based and Transformer-based segmentation models across all tasks. The code is available at https://github.com/rongzhou7/TTT-Unet.
Abstract:Vision Transformers (ViTs) have achieved remarkable performance in various image classification tasks by leveraging the attention mechanism to process image patches as tokens. However, the high computational and memory demands of ViTs pose significant challenges for deployment in resource-constrained environments. This paper introduces ViT-1.58b, a novel 1.58-bit quantized ViT model designed to drastically reduce memory and computational overhead while preserving competitive performance. ViT-1.58b employs ternary quantization, which refines the balance between efficiency and accuracy by constraining weights to {-1, 0, 1} and quantizing activations to 8-bit precision. Our approach ensures efficient scaling in terms of both memory and computation. Experiments on CIFAR-10 and ImageNet-1k demonstrate that ViT-1.58b maintains comparable accuracy to full-precision Vit, with significant reductions in memory usage and computational costs. This paper highlights the potential of extreme quantization techniques in developing sustainable AI solutions and contributes to the broader discourse on efficient model deployment in practical applications. Our code and weights are available at https://github.com/DLYuanGod/ViT-1.58b.
Abstract:Graph Neural Networks (GNNs) have demonstrated effectiveness in various graph learning tasks, yet their reliance on message-passing constraints their deployment in latency-sensitive applications such as financial fraud detection. Recent works have explored distilling knowledge from GNNs to Multi-Layer Perceptrons (MLPs) to accelerate inference. However, this task-specific supervised distillation limits generalization to unseen nodes, which are prevalent in latency-sensitive applications. To this end, we present \textbf{\textsc{SimMLP}}, a \textbf{\textsc{Sim}}ple yet effective framework for learning \textbf{\textsc{MLP}}s on graphs without supervision, to enhance generalization. \textsc{SimMLP} employs self-supervised alignment between GNNs and MLPs to capture the fine-grained and generalizable correlation between node features and graph structures, and proposes two strategies to alleviate the risk of trivial solutions. Theoretically, we comprehensively analyze \textsc{SimMLP} to demonstrate its equivalence to GNNs in the optimal case and its generalization capability. Empirically, \textsc{SimMLP} outperforms state-of-the-art baselines, especially in settings with unseen nodes. In particular, it obtains significant performance gains {\bf (7$\sim$26\%)} over MLPs and inference acceleration over GNNs {\bf (90$\sim$126$\times$)} on large-scale graph datasets. Our codes are available at: \url{https://github.com/Zehong-Wang/SimMLP}.
Abstract:Transfer learning aims to boost the learning on the target task leveraging knowledge learned from other relevant tasks. However, when the source and target are not closely related, the learning performance may be adversely affected, a phenomenon known as negative transfer. In this paper, we investigate the negative transfer in graph transfer learning, which is important yet underexplored. We reveal that, unlike image or text, negative transfer commonly occurs in graph-structured data, even when source and target graphs share semantic similarities. Specifically, we identify that structural differences significantly amplify the dissimilarities in the node embeddings across graphs. To mitigate this, we bring a new insight: for semantically similar graphs, although structural differences lead to significant distribution shift in node embeddings, their impact on subgraph embeddings could be marginal. Building on this insight, we introduce two effective yet elegant methods, Subgraph Pooling (SP) and Subgraph Pooling++ (SP++), that transfer subgraph-level knowledge across graphs. We theoretically analyze the role of SP in reducing graph discrepancy and conduct extensive experiments to evaluate its superiority under various settings. Our code and datasets are available at: https://github.com/Zehong-Wang/Subgraph-Pooling.
Abstract:Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.
Abstract:Recent studies have shown that graph neural networks (GNNs) exhibit strong biases towards the node degree: they usually perform satisfactorily on high-degree nodes with rich neighbor information but struggle with low-degree nodes. Existing works tackle this problem by deriving either designated GNN architectures or training strategies specifically for low-degree nodes. Though effective, these approaches unintentionally create an artificial out-of-distribution scenario, where models mainly or even only observe low-degree nodes during the training, leading to a downgraded performance for high-degree nodes that GNNs originally perform well at. In light of this, we propose a test-time augmentation framework, namely GraphPatcher, to enhance test-time generalization of any GNNs on low-degree nodes. Specifically, GraphPatcher iteratively generates virtual nodes to patch artificially created low-degree nodes via corruptions, aiming at progressively reconstructing target GNN's predictions over a sequence of increasingly corrupted nodes. Through this scheme, GraphPatcher not only learns how to enhance low-degree nodes (when the neighborhoods are heavily corrupted) but also preserves the original superior performance of GNNs on high-degree nodes (when lightly corrupted). Additionally, GraphPatcher is model-agnostic and can also mitigate the degree bias for either self-supervised or supervised GNNs. Comprehensive experiments are conducted over seven benchmark datasets and GraphPatcher consistently enhances common GNNs' overall performance by up to 3.6% and low-degree performance by up to 6.5%, significantly outperforming state-of-the-art baselines. The source code is publicly available at https://github.com/jumxglhf/GraphPatcher.
Abstract:Social media platforms such as Instagram and Twitter have emerged as critical channels for drug marketing and illegal sale. Detecting and labeling online illicit drug trafficking activities becomes important in addressing this issue. However, the effectiveness of conventional supervised learning methods in detecting drug trafficking heavily relies on having access to substantial amounts of labeled data, while data annotation is time-consuming and resource-intensive. Furthermore, these models often face challenges in accurately identifying trafficking activities when drug dealers use deceptive language and euphemisms to avoid detection. To overcome this limitation, we conduct the first systematic study on leveraging large language models (LLMs), such as ChatGPT, to detect illicit drug trafficking activities on social media. We propose an analytical framework to compose \emph{knowledge-informed prompts}, which serve as the interface that humans can interact with and use LLMs to perform the detection task. Additionally, we design a Monte Carlo dropout based prompt optimization method to further to improve performance and interpretability. Our experimental findings demonstrate that the proposed framework outperforms other baseline language models in terms of drug trafficking detection accuracy, showing a remarkable improvement of nearly 12\%. By integrating prior knowledge and the proposed prompts, ChatGPT can effectively identify and label drug trafficking activities on social networks, even in the presence of deceptive language and euphemisms used by drug dealers to evade detection. The implications of our research extend to social networks, emphasizing the importance of incorporating prior knowledge and scenario-based prompts into analytical tools to improve online security and public safety.
Abstract:The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research.
Abstract:Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to essential applications requiring solid robustness or vigorous security standards, such as product recommendation and user behavior modeling. Under these scenarios, exploiting GNN's vulnerabilities and further downgrading its performance become extremely incentive for adversaries. Previous attackers mainly focus on structural perturbations or node injections to the existing graphs, guided by gradients from the surrogate models. Although they deliver promising results, several limitations still exist. For the structural perturbation attack, to launch a proposed attack, adversaries need to manipulate the existing graph topology, which is impractical in most circumstances. Whereas for the node injection attack, though being more practical, current approaches require training surrogate models to simulate a white-box setting, which results in significant performance downgrade when the surrogate architecture diverges from the actual victim model. To bridge these gaps, in this paper, we study the problem of black-box node injection attack, without training a potentially misleading surrogate model. Specifically, we model the node injection attack as a Markov decision process and propose Gradient-free Graph Advantage Actor Critic, namely G2A2C, a reinforcement learning framework in the fashion of advantage actor critic. By directly querying the victim model, G2A2C learns to inject highly malicious nodes with extremely limited attacking budgets, while maintaining a similar node feature distribution. Through our comprehensive experiments over eight acknowledged benchmark datasets with different characteristics, we demonstrate the superior performance of our proposed G2A2C over the existing state-of-the-art attackers. Source code is publicly available at: https://github.com/jumxglhf/G2A2C}.