Abstract:Foundation models aim to create general, cross-task, and cross-domain machine learning models by pretraining on large-scale datasets to capture shared patterns or concepts (generalities), such as contours, colors, textures, and edges in images, or tokens, words, and sentences in text. However, discovering generalities across graphs remains challenging, which has hindered the development of graph foundation models. To tackle this challenge, in this paper, we propose a novel approach to learn generalities across graphs via task-trees. Specifically, we first define the basic learning instances in graphs as task-trees and assume that the generalities shared across graphs are, at least partially, preserved in the task-trees of the given graphs. To validate the assumption, we first perform a theoretical analysis of task-trees in terms of stability, transferability, and generalization. We find that if a graph neural network (GNN) model is pretrained on diverse task-trees through a reconstruction task, it can learn sufficient transferable knowledge for downstream tasks using an appropriate set of fine-tuning samples. To empirically validate the assumption, we further instantiate the theorems by developing a cross-task, cross-domain graph foundation model named Graph generality Identifier on task-Trees (GIT). The extensive experiments over 30 graphs from five domains demonstrate the effectiveness of GIT in fine-tuning, in-context learning, and zero-shot learning scenarios. Particularly, the general GIT model pretrained on large-scale datasets can be quickly adapted to specific domains, matching or even surpassing expert models designed for those domains. Our data and code are available at https://github.com/Zehong-Wang/GIT.
Abstract:Diet plays a critical role in human health, yet tailoring dietary reasoning to individual health conditions remains a major challenge. Nutrition Question Answering (QA) has emerged as a popular method for addressing this problem. However, current research faces two critical limitations. On one hand, the absence of datasets involving user-specific medical information severely limits \textit{personalization}. This challenge is further compounded by the wide variability in individual health needs. On the other hand, while large language models (LLMs), a popular solution for this task, demonstrate strong reasoning abilities, they struggle with the domain-specific complexities of personalized healthy dietary reasoning, and existing benchmarks fail to capture these challenges. To address these gaps, we introduce the Nutritional Graph Question Answering (NGQA) benchmark, the first graph question answering dataset designed for personalized nutritional health reasoning. NGQA leverages data from the National Health and Nutrition Examination Survey (NHANES) and the Food and Nutrient Database for Dietary Studies (FNDDS) to evaluate whether a food is healthy for a specific user, supported by explanations of the key contributing nutrients. The benchmark incorporates three question complexity settings and evaluates reasoning across three downstream tasks. Extensive experiments with LLM backbones and baseline models demonstrate that the NGQA benchmark effectively challenges existing models. In sum, NGQA addresses a critical real-world problem while advancing GraphQA research with a novel domain-specific benchmark.
Abstract:Automated task guidance has recently attracted attention from the AI research community. Procedural mistake detection (PMD) is a challenging sub-problem of classifying whether a human user (observed through egocentric video) has successfully executed the task at hand (specified by a procedural text). Despite significant efforts in building resources and models for PMD, machine performance remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we recast PMD to an explanatory self-dialog of questions and answers, which serve as evidence for a decision. As this reformulation enables an unprecedented transparency, we leverage a fine-tuned natural language inference (NLI) model to formulate two automated coherence metrics for generated explanations. Our results show that while open-source VLMs struggle with this task off-the-shelf, their accuracy, coherence, and dialog efficiency can be vastly improved by incorporating these coherence metrics into common inference and fine-tuning methods. Furthermore, our multi-faceted metrics can visualize common outcomes at a glance, highlighting areas for improvement.
Abstract:Graphs are ubiquitous data structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. Graph neural networks (GNNs) have become a popular tool to learn node embeddings through message passing on these structures. However, a significant challenge arises when applying GNNs to multiple graphs with different feature spaces, as existing GNN architectures are not designed for cross-graph feature alignment. To address this, recent approaches introduce text-attributed graphs, where each node is associated with a textual description, enabling the use of a shared textual encoder to project nodes from different graphs into a unified feature space. While promising, this method relies heavily on the availability of text-attributed data, which can be difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), which leverages large language models (LLMs) to automatically convert existing graphs into text-attributed graphs. The key idea is to integrate topological information with each node's properties, enhancing the LLMs' ability to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating that it enables a single GNN to operate across diverse graphs. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data, even in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.
Abstract:The prevalence of unhealthy eating habits has become an increasingly concerning issue in the United States. However, major food recommendation platforms (e.g., Yelp) continue to prioritize users' dietary preferences over the healthiness of their choices. Although efforts have been made to develop health-aware food recommendation systems, the personalization of such systems based on users' specific health conditions remains under-explored. In addition, few research focus on the interpretability of these systems, which hinders users from assessing the reliability of recommendations and impedes the practical deployment of these systems. In response to this gap, we first establish two large-scale personalized health-aware food recommendation benchmarks at the first attempt. We then develop a novel framework, Multi-Objective Personalized Interpretable Health-aware Food Recommendation System (MOPI-HFRS), which provides food recommendations by jointly optimizing the three objectives: user preference, personalized healthiness and nutritional diversity, along with an large language model (LLM)-enhanced reasoning module to promote healthy dietary knowledge through the interpretation of recommended results. Specifically, this holistic graph learning framework first utilizes two structure learning and a structure pooling modules to leverage both descriptive features and health data. Then it employs Pareto optimization to achieve designed multi-facet objectives. Finally, to further promote the healthy dietary knowledge and awareness, we exploit an LLM by utilizing knowledge-infusion, prompting the LLMs with knowledge obtained from the recommendation model for interpretation.
Abstract:Graph Neural Networks (GNNs) have demonstrated their effectiveness in various graph learning tasks, yet their reliance on neighborhood aggregation during inference poses challenges for deployment in latency-sensitive applications, such as real-time financial fraud detection. To address this limitation, recent studies have proposed distilling knowledge from teacher GNNs into student Multi-Layer Perceptrons (MLPs) trained on node content, aiming to accelerate inference. However, these approaches often inadequately explore structural information when inferring unseen nodes. To this end, we introduce SimMLP, a Self-supervised framework for learning MLPs on graphs, designed to fully integrate rich structural information into MLPs. Notably, SimMLP is the first MLP-learning method that can achieve equivalence to GNNs in the optimal case. The key idea is to employ self-supervised learning to align the representations encoded by graph context-aware GNNs and neighborhood dependency-free MLPs, thereby fully integrating the structural information into MLPs. We provide a comprehensive theoretical analysis, demonstrating the equivalence between SimMLP and GNNs based on mutual information and inductive bias, highlighting SimMLP's advanced structural learning capabilities. Additionally, we conduct extensive experiments on 20 benchmark datasets, covering node classification, link prediction, and graph classification, to showcase SimMLP's superiority over state-of-the-art baselines, particularly in scenarios involving unseen nodes (e.g., inductive and cold-start node classification) where structural insights are crucial. Our codes are available at: https://github.com/Zehong-Wang/SimMLP.
Abstract:Inspired by the success of foundation models in applications such as ChatGPT, as graph data has been ubiquitous, one can envision the far-reaching impacts that can be brought by Graph Foundation Models (GFMs) with broader applications in the areas such as scientific research, social network analysis, drug discovery, and e-commerce. Despite the significant progress of pre-trained graph neural networks, there haven't been GFMs that can achieve desired performance on various graph-learning-related tasks. Building GFMs may rely on a vocabulary that encodes transferable patterns shared among different tasks and domains. Unlike image and text, defining such transferable patterns for graphs remains an open question. In this paper, we aim to bridge this gap by rethinking the transferable patterns on graphs as computation trees -- i.e., tree structures derived from the message-passing process. Based on this insight, we propose a cross-task, cross-domain graph foundation model named GFT, short for Graph Foundation model with transferable Tree vocabulary. By treating computation trees as tokens within the transferable vocabulary, GFT improves model generalization and reduces the risk of negative transfer. The theoretical analyses and extensive experimental studies have demonstrated the transferability of computation trees and shown the effectiveness of GFT across diverse tasks and domains in graph learning. The open source code and data are available at https://github.com/Zehong-Wang/GFT.
Abstract:Accurate classification of Intraductal Papillary Mucinous Neoplasms (IPMN) is essential for identifying high-risk cases that require timely intervention. In this study, we develop a federated learning framework for multi-center IPMN classification utilizing a comprehensive pancreas MRI dataset. This dataset includes 653 T1-weighted and 656 T2-weighted MRI images, accompanied by corresponding IPMN risk scores from 7 leading medical institutions, making it the largest and most diverse dataset for IPMN classification to date. We assess the performance of DenseNet-121 in both centralized and federated settings for training on distributed data. Our results demonstrate that the federated learning approach achieves high classification accuracy comparable to centralized learning while ensuring data privacy across institutions. This work marks a significant advancement in collaborative IPMN classification, facilitating secure and high-accuracy model training across multiple centers.
Abstract:Federated learning (FL) enables collaborative model training across institutions without sharing sensitive data, making it an attractive solution for medical imaging tasks. However, traditional FL methods, such as Federated Averaging (FedAvg), face difficulties in generalizing across domains due to variations in imaging protocols and patient demographics across institutions. This challenge is particularly evident in pancreas MRI segmentation, where anatomical variability and imaging artifacts significantly impact performance. In this paper, we conduct a comprehensive evaluation of FL algorithms for pancreas MRI segmentation and introduce a novel approach that incorporates adaptive aggregation weights. By dynamically adjusting the contribution of each client during model aggregation, our method accounts for domain-specific differences and improves generalization across heterogeneous datasets. Experimental results demonstrate that our approach enhances segmentation accuracy and reduces the impact of domain shift compared to conventional FL methods while maintaining privacy-preserving capabilities. Significant performance improvements are observed across multiple hospitals (centers).
Abstract:Substantial research on deep learning-based emergent communication uses the referential game framework, specifically the Lewis signaling game, however we argue that successful communication in this game typically only need one or two effective symbols (i.e. message length) because of a sampling pitfall in the training data. To address this issue, we provide a theoretical analysis and introduce a combinatorial algorithm SolveMinSym (SMS) to determine the minimum number of symbols for successful communication min(|M|) in the Lewis signaling game. We use SMS algorithm to create datasets with different min(|M|) to empirically show that higher min(|M|) for the training data increases the number of effective symbols in the emergent language.