Abstract:Diet plays a critical role in human health, yet tailoring dietary reasoning to individual health conditions remains a major challenge. Nutrition Question Answering (QA) has emerged as a popular method for addressing this problem. However, current research faces two critical limitations. On one hand, the absence of datasets involving user-specific medical information severely limits \textit{personalization}. This challenge is further compounded by the wide variability in individual health needs. On the other hand, while large language models (LLMs), a popular solution for this task, demonstrate strong reasoning abilities, they struggle with the domain-specific complexities of personalized healthy dietary reasoning, and existing benchmarks fail to capture these challenges. To address these gaps, we introduce the Nutritional Graph Question Answering (NGQA) benchmark, the first graph question answering dataset designed for personalized nutritional health reasoning. NGQA leverages data from the National Health and Nutrition Examination Survey (NHANES) and the Food and Nutrient Database for Dietary Studies (FNDDS) to evaluate whether a food is healthy for a specific user, supported by explanations of the key contributing nutrients. The benchmark incorporates three question complexity settings and evaluates reasoning across three downstream tasks. Extensive experiments with LLM backbones and baseline models demonstrate that the NGQA benchmark effectively challenges existing models. In sum, NGQA addresses a critical real-world problem while advancing GraphQA research with a novel domain-specific benchmark.
Abstract:The unique characteristics of text data make classification tasks a complex problem. Advances in unsupervised and semi-supervised learning and autoencoder architectures addressed several challenges. However, they still struggle with imbalanced text classification tasks, a common scenario in real-world applications, demonstrating a tendency to produce embeddings with unfavorable properties, such as class overlap. In this paper, we show that leveraging class-aware contrastive optimization combined with denoising autoencoders can successfully tackle imbalanced text classification tasks, achieving better performance than the current state-of-the-art. Concretely, our proposal combines reconstruction loss with contrastive class separation in the embedding space, allowing a better balance between the truthfulness of the generated embeddings and the model's ability to separate different classes. Compared with an extensive set of traditional and state-of-the-art competing methods, our proposal demonstrates a notable increase in performance across a wide variety of text datasets.
Abstract:Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.
Abstract:Large language models (LLMs) offer powerful capabilities but also introduce significant risks. One way to mitigate these risks is through comprehensive pre-deployment evaluations using benchmarks designed to test for specific vulnerabilities. However, the rapidly expanding body of LLM benchmark literature lacks a standardized method for documenting crucial benchmark details, hindering consistent use and informed selection. BenchmarkCards addresses this gap by providing a structured framework specifically for documenting LLM benchmark properties rather than defining the entire evaluation process itself. BenchmarkCards do not prescribe how to measure or interpret benchmark results (e.g., defining ``correctness'') but instead offer a standardized way to capture and report critical characteristics like targeted risks and evaluation methodologies, including properties such as bias and fairness. This structured metadata facilitates informed benchmark selection, enabling researchers to choose appropriate benchmarks and promoting transparency and reproducibility in LLM evaluation.
Abstract:LLM-as-a-Judge has been widely utilized as an evaluation method in various benchmarks and served as supervised rewards in model training. However, despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility. Therefore, we identify 12 key potential biases and propose a new automated bias quantification framework-CALM-which systematically quantifies and analyzes each type of bias in LLM-as-a-Judge by using automated and principle-guided modification. Our experiments cover multiple popular language models, and the results indicate that while advanced models have achieved commendable overall performance, significant biases persist in certain specific tasks. Empirical results suggest that there remains room for improvement in the reliability of LLM-as-a-Judge. Moreover, we also discuss the explicit and implicit influence of these biases and give some suggestions for the reliable application of LLM-as-a-Judge. Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
Abstract:Sharing private data for learning tasks is pivotal for transparent and secure machine learning applications. Many privacy-preserving techniques have been proposed for this task aiming to transform the data while ensuring the privacy of individuals. Some of these techniques have been incorporated into tools, whereas others are accessed through various online platforms. However, such tools require manual configuration, which can be complex and time-consuming. Moreover, they require substantial expertise, potentially restricting their use to those with advanced technical knowledge. In this paper, we propose AUTOPRIV, the first automated privacy-preservation method, that eliminates the need for any manual configuration. AUTOPRIV employs meta-learning to automate the de-identification process, facilitating the secure release of data for machine learning tasks. The main goal is to anticipate the predictive performance and privacy risk of a large set of privacy configurations. We provide a ranked list of the most promising solutions, which are likely to achieve an optimal approximation within a new domain. AUTOPRIV is highly effective as it reduces computational complexity and energy consumption considerably.
Abstract:Multiple synthetic data generation models have emerged, among which deep learning models have become the vanguard due to their ability to capture the underlying characteristics of the original data. However, the resemblance of the synthetic to the original data raises important questions on the protection of individuals' privacy. As synthetic data is perceived as a means to fully protect personal information, most current related work disregards the impact of re-identification risk. In particular, limited attention has been given to exploring outliers, despite their privacy relevance. In this work, we analyze the privacy of synthetic data w.r.t the outliers. Our main findings suggest that outliers re-identification via linkage attack is feasible and easily achieved. Furthermore, additional safeguards such as differential privacy can prevent re-identification, albeit at the expense of the data utility.
Abstract:As machine learning continues to gain prominence, transparency and explainability are increasingly critical. Without an understanding of these models, they can replicate and worsen human bias, adversely affecting marginalized communities. Algorithmic recourse emerges as a tool for clarifying decisions made by predictive models, providing actionable insights to alter outcomes. They answer, 'What do I have to change?' to achieve the desired result. Despite their importance, current algorithmic recourse methods treat all domain values equally, which is unrealistic in real-world settings. In this paper, we propose a novel framework, Relevance-Aware Algorithmic Recourse (RAAR), that leverages the concept of relevance in applying algorithmic recourse to regression tasks. We conducted multiple experiments on 15 datasets to outline how relevance influences recourses. Results show that relevance contributes algorithmic recourses comparable to well-known baselines, with greater efficiency and lower relative costs.
Abstract:A long-standing dilemma prevents the broader application of explanation methods: general applicability and inference speed. On the one hand, existing model-agnostic explanation methods usually make minimal pre-assumptions about the prediction models to be explained. Still, they require additional queries to the model through propagation or back-propagation to approximate the models' behaviors, resulting in slow inference and hindering their use in time-sensitive tasks. On the other hand, various model-dependent explanations have been proposed that achieve low-cost, fast inference but at the expense of limiting their applicability to specific model structures. In this study, we bridge the gap between the universality of model-agnostic approaches and the efficiency of model-specific approaches by proposing a novel framework without assumptions on the prediction model's structures, achieving high efficiency during inference and allowing for real-time explanations. To achieve this, we first define explanations through a set of human-comprehensible concepts and propose a framework to elucidate model predictions via minimal feasible concept sets. Second, we show that a minimal feasible set generator can be learned as a companion explainer to the prediction model, generating explanations for predictions. Finally, we validate this framework by implementing a novel model-agnostic method that provides robust explanations while facilitating real-time inference. Our claims are substantiated by comprehensive experiments, highlighting the effectiveness and efficiency of our approach.
Abstract:Many evaluation metrics can be used to assess the performance of models in binary classification tasks. However, most of them are derived from a confusion matrix in a non-differentiable form, making it very difficult to generate a differentiable loss function that could directly optimize them. The lack of solutions to bridge this challenge not only hinders our ability to solve difficult tasks, such as imbalanced learning, but also requires the deployment of computationally expensive hyperparameter search processes in model selection. In this paper, we propose a general-purpose approach that transforms any confusion matrix-based metric into a loss function, \textit{AnyLoss}, that is available in optimization processes. To this end, we use an approximation function to make a confusion matrix represented in a differentiable form, and this approach enables any confusion matrix-based metric to be directly used as a loss function. The mechanism of the approximation function is provided to ensure its operability and the differentiability of our loss functions is proved by suggesting their derivatives. We conduct extensive experiments under diverse neural networks with many datasets, and we demonstrate their general availability to target any confusion matrix-based metrics. Our method, especially, shows outstanding achievements in dealing with imbalanced datasets, and its competitive learning speed, compared to multiple baseline models, underscores its efficiency.