Abstract:Graph-structured data is ubiquitous in scientific domains, where models often face imbalanced learning settings. In imbalanced regression, domain preferences focus on specific target value ranges representing the most scientifically valuable cases; we observe a significant lack of research. In this paper, we present Spectral Manifold Harmonization (SMH), a novel approach for addressing this imbalanced regression challenge on graph-structured data by generating synthetic graph samples that preserve topological properties while focusing on often underrepresented target distribution regions. Conventional methods fail in this context because they either ignore graph topology in case generation or do not target specific domain ranges, resulting in models biased toward average target values. Experimental results demonstrate the potential of SMH on chemistry and drug discovery benchmark datasets, showing consistent improvements in predictive performance for target domain ranges.
Abstract:Molecular representation is a foundational element in our understanding of the physical world. Its importance ranges from the fundamentals of chemical reactions to the design of new therapies and materials. Previous molecular machine learning models have employed strings, fingerprints, global features, and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a novel approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects. We show that the explicit addition of stereoelectronic interactions significantly improves the performance of molecular machine learning models. Furthermore, stereoelectronics-infused representations can be learned and deployed with a tailored double graph neural network workflow, enabling its application to any downstream molecular machine learning task. Finally, we show that the learned representations allow for facile stereoelectronic evaluation of previously intractable systems, such as entire proteins, opening new avenues of molecular design.
Abstract:Transformer-based large language models are rapidly advancing in the field of machine learning research, with applications spanning natural language, biology, chemistry, and computer programming. Extreme scaling and reinforcement learning from human feedback have significantly improved the quality of generated text, enabling these models to perform various tasks and reason about their choices. In this paper, we present an Intelligent Agent system that combines multiple large language models for autonomous design, planning, and execution of scientific experiments. We showcase the Agent's scientific research capabilities with three distinct examples, with the most complex being the successful performance of catalyzed cross-coupling reactions. Finally, we discuss the safety implications of such systems and propose measures to prevent their misuse.