Abstract:AI safety is a rapidly growing area of research that seeks to prevent the harm and misuse of frontier AI technology, particularly with respect to generative AI (GenAI) tools that are capable of creating realistic and high-quality content through text prompts. Examples of such tools include large language models (LLMs) and text-to-image (T2I) diffusion models. As the performance of various leading GenAI models approaches saturation due to similar training data sources and neural network architecture designs, the development of reliable safety guardrails has become a key differentiator for responsibility and sustainability. This paper presents a formalization of the concept of computational safety, which is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI through the lens of signal processing theory and methods. In particular, we explore two exemplary categories of computational safety challenges in GenAI that can be formulated as hypothesis testing problems. For the safety of model input, we show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts. For the safety of model output, we elucidate how statistical signal processing and adversarial learning can be used to detect AI-generated content. Finally, we discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
Abstract:The advancement of large language models (LLMs) has made it difficult to differentiate human-written text from AI-generated text. Several AI-text detectors have been developed in response, which typically utilize a fixed global threshold (e.g., {\theta} = 0.5) to classify machine-generated text. However, we find that one universal threshold can fail to account for subgroup-specific distributional variations. For example, when using a fixed threshold, detectors make more false positive errors on shorter human-written text than longer, and more positive classifications on neurotic writing styles than open among long text. These discrepancies can lead to misclassification that disproportionately affects certain groups. We address this critical limitation by introducing FairOPT, an algorithm for group-specific threshold optimization in AI-generated content classifiers. Our approach partitions data into subgroups based on attributes (e.g., text length and writing style) and learns decision thresholds for each group, which enables careful balancing of performance and fairness metrics within each subgroup. In experiments with four AI text classifiers on three datasets, FairOPT enhances overall F1 score and decreases balanced error rate (BER) discrepancy across subgroups. Our framework paves the way for more robust and fair classification criteria in AI-generated output detection.
Abstract:Recent advances in Large Language Models (LLMs) have revolutionized generative systems, achieving excellent performance across diverse domains. Although these models perform well in controlled environments, their real-world applications frequently encounter inputs containing both essential and irrelevant details. Our investigation has revealed a critical vulnerability in LLMs, which we term Contextual Distraction Vulnerability (CDV). This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context. To systematically investigate this vulnerability, we propose an efficient tree-based search methodology to automatically generate CDV examples. Our approach successfully generates CDV examples across four datasets, causing an average performance degradation of approximately 45% in state-of-the-art LLMs. To address this critical issue, we explore various mitigation strategies and find that post-targeted training approaches can effectively enhance model robustness against contextual distractions. Our findings highlight the fundamental nature of CDV as an ability-level challenge rather than a knowledge-level issue since models demonstrate the necessary knowledge by answering correctly in the absence of distractions. This calls the community's attention to address CDV during model development to ensure reliability. The code is available at https://github.com/wyf23187/LLM_CDV.
Abstract:Federated learning collaboratively trains a neural network on a global server, where each local client receives the current global model weights and sends back parameter updates (gradients) based on its local private data. The process of sending these model updates may leak client's private data information. Existing gradient inversion attacks can exploit this vulnerability to recover private training instances from a client's gradient vectors. Recently, researchers have proposed advanced gradient inversion techniques that existing defenses struggle to handle effectively. In this work, we present a novel defense tailored for large neural network models. Our defense capitalizes on the high dimensionality of the model parameters to perturb gradients within a subspace orthogonal to the original gradient. By leveraging cold posteriors over orthogonal subspaces, our defense implements a refined gradient update mechanism. This enables the selection of an optimal gradient that not only safeguards against gradient inversion attacks but also maintains model utility. We conduct comprehensive experiments across three different datasets and evaluate our defense against various state-of-the-art attacks and defenses. Code is available at https://censor-gradient.github.io.
Abstract:Prompt learning is an effective way to exploit the potential of large-scale pre-trained foundational models. Continuous prompts parameterize context tokens in prompts by turning them into differentiable vectors. Deep continuous prompts insert prompts not only in the input but also in the intermediate hidden representations. Manually designed deep continuous prompts exhibit a remarkable improvement compared to the zero-shot pre-trained model on downstream tasks. How to automate the continuous prompt design is an underexplored area, and a fundamental question arises, is manually designed deep prompt strategy optimal? To answer this question, we propose a method dubbed differentiable prompt learning (DPL). The DPL method is formulated as an optimization problem to automatically determine the optimal context length of the prompt to be added to each layer, where the objective is to maximize the performance. We test the DPL method on the pre-trained CLIP. We empirically find that by using only limited data, our DPL method can find deep continuous prompt configuration with high confidence. The performance on the downstream tasks exhibits the superiority of the automatic design: our method boosts the average test accuracy by 2.60% on 11 datasets compared to baseline methods. Besides, our method focuses only on the prompt configuration (i.e. context length for each layer), which means that our method is compatible with the baseline methods that have sophisticated designs to boost the performance. The DPL method can be deployed to large language models or computer vision models at no cost.
Abstract:The emergence of Vision-Language Models (VLMs) is a significant advancement in integrating computer vision with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities. However, this progress has also made VLMs vulnerable to sophisticated adversarial attacks, raising concerns about their reliability. The objective of this paper is to assess the resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs. To evaluate a VLM's ability to maintain its robustness against adversarial input perturbations, we propose a novel metric called the \textbf{Retention Score}. Retention Score is a multi-modal evaluation metric that includes Retention-I and Retention-T scores for quantifying jailbreak risks in visual and textual components of VLMs. Our process involves generating synthetic image-text pairs using a conditional diffusion model. These pairs are then predicted for toxicity score by a VLM alongside a toxicity judgment classifier. By calculating the margin in toxicity scores, we can quantify the robustness of the VLM in an attack-agnostic manner. Our work has four main contributions. First, we prove that Retention Score can serve as a certified robustness metric. Second, we demonstrate that most VLMs with visual components are less robust against jailbreak attacks than the corresponding plain VLMs. Additionally, we evaluate black-box VLM APIs and find that the security settings in Google Gemini significantly affect the score and robustness. Moreover, the robustness of GPT4V is similar to the medium settings of Gemini. Finally, our approach offers a time-efficient alternative to existing adversarial attack methods and provides consistent model robustness rankings when evaluated on VLMs including MiniGPT-4, InstructBLIP, and LLaVA.
Abstract:In vision-language models (VLMs), the ability to perceive and interpret color and physical environment is crucial for achieving contextually accurate understanding and interaction. However, despite advances in multimodal modeling, there remains a significant lack of specialized datasets that rigorously evaluate a model's capacity to discern subtle color variations and spatial context -- critical elements for situational comprehension and reliable deployment across real-world applications. Toward that goal, we curate MegaCOIN, a high-quality, human-labeled dataset based on \emph{real} images with various contextual attributes. MegaCOIN consists of two parts: MegaCOIN-Instruct, which serves as a supervised fine-tuning (SFT) dataset for VLMs; and MegaCOIN-Bench, an annotated test set that can be used as a stand-alone QA dataset. MegaCOIN~provides three annotated features for 220,000 real images: foreground color, background color, and description of an object's physical environment, constituting 660k human annotations. In addition, MegaCOIN can be applied to benchmark domain generalization (DG) algorithms. We explore benchmarking DG methods in the linear probing setup for VLM and show some new insights. Last but not least, we show that VLMs, including GPT-4o, have subpar color recognition capabilities, and fine-tuning with MegaCOIN can result in improved performance on visual evaluation tasks. In certain cases, MegaCOIN fine-tuned small-scale opensource models such as LLaVA and Bunny can outperform closed-source GPT-4o. We hope the utilities of MegaCOIN can shed light on the directions VLMs can improve and provide a more complex platform for domain generalization algorithms.
Abstract:The rapid advancement of generative models has introduced serious risks, including deepfake techniques for facial synthesis and editing. Traditional approaches rely on training classifiers and enhancing generalizability through various feature extraction techniques. Meanwhile, training-free detection methods address issues like limited data and overfitting by directly leveraging statistical properties from vision foundation models to distinguish between real and fake images. The current leading training-free approach, RIGID, utilizes DINOv2 sensitivity to perturbations in image space for detecting fake images, with fake image embeddings exhibiting greater sensitivity than those of real images. This observation prompts us to investigate how detection performance varies across model backbones, perturbation types, and datasets. Our experiments reveal that detection performance is closely linked to model robustness, with self-supervised (SSL) models providing more reliable representations. While Gaussian noise effectively detects general objects, it performs worse on facial images, whereas Gaussian blur is more effective due to potential frequency artifacts. To further improve detection, we introduce Contrastive Blur, which enhances performance on facial images, and MINDER (MINimum distance DetEctoR), which addresses noise type bias, balancing performance across domains. Beyond performance gains, our work offers valuable insights for both the generative and detection communities, contributing to a deeper understanding of model robustness property utilized for deepfake detection.
Abstract:Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community. While various safety mechanisms have been developed, the field lacks systematic tools for evaluating their effectiveness against real-world misuse scenarios. In this work, we propose ICER, a novel red-teaming framework that leverages Large Language Models (LLMs) and a bandit optimization-based algorithm to generate interpretable and semantic meaningful problematic prompts by learning from past successful red-teaming attempts. Our ICER efficiently probes safety mechanisms across different T2I models without requiring internal access or additional training, making it broadly applicable to deployed systems. Through extensive experiments, we demonstrate that ICER significantly outperforms existing prompt attack methods in identifying model vulnerabilities while maintaining high semantic similarity with intended content. By uncovering that successful jailbreaking instances can systematically facilitate the discovery of new vulnerabilities, our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
Abstract:Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning. It seeks to revolutionize machine learning by harnessing the unique capabilities of quantum mechanics and employs machine learning techniques to advance quantum computing research. This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits (VQC) are used to develop QML architectures on noisy intermediate-scale quantum (NISQ) devices. We discuss machine learning for the quantum computing paradigm, showcasing our recent theoretical and empirical findings. In particular, we delve into future directions for studying QML, exploring the potential industrial impacts of QML research.