Abstract:Recent studies have highlighted significant fairness issues in Graph Transformer (GT) models, particularly against subgroups defined by sensitive features. Additionally, GTs are computationally intensive and memory-demanding, limiting their application to large-scale graphs. Our experiments demonstrate that graph partitioning can enhance the fairness of GT models while reducing computational complexity. To understand this improvement, we conducted a theoretical investigation into the root causes of fairness issues in GT models. We found that the sensitive features of higher-order nodes disproportionately influence lower-order nodes, resulting in sensitive feature bias. We propose Fairness-aware scalable GT based on Graph Partitioning (FairGP), which partitions the graph to minimize the negative impact of higher-order nodes. By optimizing attention mechanisms, FairGP mitigates the bias introduced by global attention, thereby enhancing fairness. Extensive empirical evaluations on six real-world datasets validate the superior performance of FairGP in achieving fairness compared to state-of-the-art methods. The codes are available at https://github.com/LuoRenqiang/FairGP.
Abstract:Traffic forecasting is an important problem in the operation and optimisation of transportation systems. State-of-the-art solutions train machine learning models by minimising the mean forecasting errors on the training data. The trained models often favour periodic events instead of aperiodic ones in their prediction results, as periodic events often prevail in the training data. While offering critical optimisation opportunities, aperiodic events such as traffic incidents may be missed by the existing models. To address this issue, we propose DualCast -- a model framework to enhance the learning capability of traffic forecasting models, especially for aperiodic events. DualCast takes a dual-branch architecture, to disentangle traffic signals into two types, one reflecting intrinsic {spatial-temporal} patterns and the other reflecting external environment contexts including aperiodic events. We further propose a cross-time attention mechanism, to capture high-order spatial-temporal relationships from both periodic and aperiodic patterns. DualCast is versatile. We integrate it with recent traffic forecasting models, consistently reducing their forecasting errors by up to 9.6% on multiple real datasets.
Abstract:The spread of fake news on social media poses significant threats to individuals and society. Text-based and graph-based models have been employed for fake news detection by analysing news content and propagation networks, showing promising results in specific scenarios. However, these data-driven models heavily rely on pre-existing in-distribution data for training, limiting their performance when confronted with fake news from emerging or previously unseen domains, known as out-of-distribution (OOD) data. Tackling OOD fake news is a challenging yet critical task. In this paper, we introduce the Causal Subgraph-oriented Domain Adaptive Fake News Detection (CSDA) model, designed to enhance zero-shot fake news detection by extracting causal substructures from propagation graphs using in-distribution data and generalising this approach to OOD data. The model employs a graph neural network based mask generation process to identify dominant nodes and edges within the propagation graph, using these substructures for fake news detection. Additionally, the performance of CSDA is further improved through contrastive learning in few-shot scenarios, where a limited amount of OOD data is available for training. Extensive experiments on public social media datasets demonstrate that CSDA effectively handles OOD fake news detection, achieving a 7 to 16 percents accuracy improvement over other state-of-the-art models.
Abstract:Visual reprogramming (VR) leverages the intrinsic capabilities of pretrained vision models by adapting their input or output interfaces to solve downstream tasks whose labels (i.e., downstream labels) might be totally different from the labels associated with the pretrained models (i.e., pretrained labels). When adapting the output interface, label mapping methods transform the pretrained labels to downstream labels by establishing a gradient-free one-to-one correspondence between the two sets of labels. However, in this paper, we reveal that one-to-one mappings may overlook the complex relationship between pretrained and downstream labels. Motivated by this observation, we propose a Bayesian-guided Label Mapping (BLM) method. BLM constructs an iteratively-updated probabilistic label mapping matrix, with each element quantifying a pairwise relationship between pretrained and downstream labels. The assignment of values to the constructed matrix is guided by Bayesian conditional probability, considering the joint distribution of the downstream labels and the labels predicted by the pretrained model on downstream samples. Experiments conducted on both pretrained vision models (e.g., ResNeXt) and vision-language models (e.g., CLIP) demonstrate the superior performance of BLM over existing label mapping methods. The success of BLM also offers a probabilistic lens through which to understand and analyze the effectiveness of VR. Our code is available at https://github.com/tmlr-group/BayesianLM.
Abstract:Cross-domain recommendation (CDR) offers a promising solution to the data sparsity problem by enabling knowledge transfer across source and target domains. However, many recent CDR models overlook crucial issues such as privacy as well as the risk of negative transfer (which negatively impact model performance), especially in multi-domain settings. To address these challenges, we propose FedGCDR, a novel federated graph learning framework that securely and effectively leverages positive knowledge from multiple source domains. First, we design a positive knowledge transfer module that ensures privacy during inter-domain knowledge transmission. This module employs differential privacy-based knowledge extraction combined with a feature mapping mechanism, transforming source domain embeddings from federated graph attention networks into reliable domain knowledge. Second, we design a knowledge activation module to filter out potential harmful or conflicting knowledge from source domains, addressing the issues of negative transfer. This module enhances target domain training by expanding the graph of the target domain to generate reliable domain attentions and fine-tunes the target model for improved negative knowledge filtering and more accurate predictions. We conduct extensive experiments on 16 popular domains of the Amazon dataset, demonstrating that FedGCDR significantly outperforms state-of-the-art methods.
Abstract:Question answering on free-form tables (a.k.a. TableQA) is a challenging task because of the flexible structure and the complex schema of tables. Recent studies use Large Language Models (LLMs) for this task, exploiting their capability in understanding the questions and tabular data which are typically given in natural language and contains many textual fields, respectively. While this approach has shown promising results, it overlooks the challenges brought by numerical values which are common in tabular data, while LLMs are known to struggle with such values. We aim to address this issue and answer numerical questions. We propose a model named TabLaP that uses LLMs as a planner rather than an answer generator, exploiting LLMs capability in multi-step reasoning while leaving the actual numerical calculations to a Python interpreter for accurate calculation. Recognizing the inaccurate nature of LLMs, we further make a first attempt to quantify the trustworthiness of the answers produced by TabLaP, such that users can use TabLaP in a regret-aware manner. Experimental results on two benchmark datasets show that TabLaP is substantially more accurate than the state-of-the-art models, improving the answer accuracy by 5.7% and 5.8% on the two datasets, respectively.
Abstract:Factual consistency is an important quality in dialogue summarization. Large language model (LLM)-based automatic text summarization models generate more factually consistent summaries compared to those by smaller pretrained language models, but they face deployment challenges in real-world applications due to privacy or resource constraints. In this paper, we investigate the use of symbolic knowledge distillation to improve the factual consistency of smaller pretrained models for dialogue summarization. We employ zero-shot learning to extract symbolic knowledge from LLMs, generating both factually consistent (positive) and inconsistent (negative) summaries. We then apply two contrastive learning objectives on these summaries to enhance smaller summarization models. Experiments with BART, PEGASUS, and Flan-T5 indicate that our approach surpasses strong baselines that rely on complex data augmentation strategies. Our approach achieves better factual consistency while maintaining coherence, fluency, and relevance, as confirmed by various automatic evaluation metrics. We also provide access to the data and code to facilitate future research.
Abstract:Visual reprogramming (VR) is a prompting technique that aims to re-purpose a pre-trained model (e.g., a classifier on ImageNet) to target tasks (e.g., medical data prediction) by learning a small-scale pattern added into input images instead of tuning considerable parameters within the model. The location of the pattern within input samples is usually determined by a pre-defined mask shared across all samples. In this paper, we show that the shared mask potentially limits VR's generalization and increases its approximation error due to the lack of sample-level adaptation. Motivated by this finding, we design a new framework for VR called sample-specific multi-channel masks (SMM). Specifically, SMM employs a lightweight ConvNet and patch-wise interpolation to generate sample-specific three-channel masks instead of a shared and pre-defined mask. Since we generate different masks for individual samples, SMM is theoretically shown to reduce approximation error for the target tasks compared with existing state-of-the-art VR methods. We also empirically demonstrate its performance gain on both ResNet and ViT. The success of SMM further highlights the broader applicability of VR in leveraging the latent knowledge of pre-trained models for various target tasks. Our code is available at https://github.com/tmlr-group/SMM.
Abstract:Spatial-temporal forecasting plays an important role in many real-world applications, such as traffic forecasting, air pollutant forecasting, crowd-flow forecasting, and so on. State-of-the-art spatial-temporal forecasting models take data-driven approaches and rely heavily on data availability. Such models suffer from accuracy issues when data is incomplete, which is common in reality due to the heavy costs of deploying and maintaining sensors for data collection. A few recent studies attempted to address the issue of incomplete data. They typically assume some data availability in a region of interest either for a short period or at a few locations. In this paper, we further study spatial-temporal forecasting for a region of interest without any historical observations, to address scenarios such as unbalanced region development, progressive deployment of sensors or lack of open data. We propose a model named STSM for the task. The model takes a contrastive learning-based approach to learn spatial-temporal patterns from adjacent regions that have recorded data. Our key insight is to learn from the locations that resemble those in the region of interest, and we propose a selective masking strategy to enable the learning. As a result, our model outperforms adapted state-of-the-art models, reducing errors consistently over both traffic and air pollutant forecasting tasks. The source code is available at https://github.com/suzy0223/STSM.
Abstract:An increasing number of related urban data sources have brought forth novel opportunities for learning urban region representations, i.e., embeddings. The embeddings describe latent features of urban regions and enable discovering similar regions for urban planning applications. Existing methods learn an embedding for a region using every different type of region feature data, and subsequently fuse all learned embeddings of a region to generate a unified region embedding. However, these studies often overlook the significance of the fusion process. The typical fusion methods rely on simple aggregation, such as summation and concatenation, thereby disregarding correlations within the fused region embeddings. To address this limitation, we propose a novel model named HAFusion. Our model is powered by a dual-feature attentive fusion module named DAFusion, which fuses embeddings from different region features to learn higher-order correlations between the regions as well as between the different types of region features. DAFusion is generic - it can be integrated into existing models to enhance their fusion process. Further, motivated by the effective fusion capability of an attentive module, we propose a hybrid attentive feature learning module named HALearning to enhance the embedding learning from each individual type of region features. Extensive experiments on three real-world datasets demonstrate that our model HAFusion outperforms state-of-the-art methods across three different prediction tasks. Using our learned region embedding leads to consistent and up to 31% improvements in the prediction accuracy.