Abstract:Electroencephalography (EEG) is essential in neuroscience and clinical practice, yet it suffers from physiological artifacts, particularly electromyography (EMG), which distort signals. We propose a deep learning model using pix2pixGAN to remove such noise and generate reliable EEG signals. Leveraging the EEGdenoiseNet dataset, we created synthetic datasets with controlled EMG noise levels for model training and testing across a signal-to-noise ratio (SNR) from -7 to 2. Our evaluation metrics included RRMSE and Pearson's CC, assessing both time and frequency domains, and compared our model with others. The pix2pixGAN model excelled, especially under high noise conditions, showing significant improvements in lower RRMSE and higher CC values. This demonstrates the model's superior accuracy and stability in purifying EEG signals, offering a robust solution for EEG analysis challenges and advancing clinical and neuroscience applications.
Abstract:Large Language Models (LLMs) have achieved impressive results in various tasks but struggle with hallucination problems and lack of relevant knowledge, especially in deep complex reasoning and knowledge-intensive tasks. Knowledge Graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. However, existing KG-based LLM reasoning methods face challenges like handling multi-hop reasoning, multi-entity questions, and effectively utilizing graph structures. To address these issues, we propose Paths-over-Graph (PoG), a novel method that enhances LLM reasoning by integrating knowledge reasoning paths from KGs, improving the interpretability and faithfulness of LLM outputs. PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration, which combines the inherent knowledge of LLMs with factual knowledge from KGs. In order to improve the efficiency, PoG prunes irrelevant information from the graph exploration first and introduces efficient three-step pruning techniques that incorporate graph structures, LLM prompting, and a pre-trained language model (e.g., SBERT) to effectively narrow down the explored candidate paths. This ensures all reasoning paths contain highly relevant information captured from KGs, making the reasoning faithful and interpretable in problem-solving. PoG innovatively utilizes graph structure to prune the irrelevant noise and represents the first method to implement multi-entity deep path detection on KGs for LLM reasoning tasks. Comprehensive experiments on five benchmark KGQA datasets demonstrate PoG outperforms the state-of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving an average accuracy improvement of 18.9%. Notably, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
Abstract:Exploring the predictive capabilities of language models in material science is an ongoing interest. This study investigates the application of language model embeddings to enhance material property prediction in materials science. By evaluating various contextual embedding methods and pre-trained models, including Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-trained Transformers (GPT), we demonstrate that domain-specific models, particularly MatBERT significantly outperform general-purpose models in extracting implicit knowledge from compound names and material properties. Our findings reveal that information-dense embeddings from the third layer of MatBERT, combined with a context-averaging approach, offer the most effective method for capturing material-property relationships from the scientific literature. We also identify a crucial "tokenizer effect," highlighting the importance of specialized text processing techniques that preserve complete compound names while maintaining consistent token counts. These insights underscore the value of domain-specific training and tokenization in materials science applications and offer a promising pathway for accelerating the discovery and development of new materials through AI-driven approaches.
Abstract:Graph representation learning, involving both node features and graph structures, is crucial for real-world applications but often encounters pervasive noise. State-of-the-art methods typically address noise by focusing separately on node features with large language models (LLMs) and on graph structures with graph structure learning models (GSLMs). In this paper, we introduce LangGSL, a robust framework that integrates the complementary strengths of pre-trained language models and GSLMs to jointly enhance both node feature and graph structure learning. In LangGSL, we first leverage LLMs to filter noise in the raw data and extract valuable cleaned information as features, enhancing the synergy of downstream models. During the mutual learning phase in LangGSL, the core idea is to leverage the relatively small language model (LM) to process local attributes and generate reliable pseudo-labels and informative node embeddings, which are then integrated into the GSLM's prediction phase. This approach enriches the global context and enhances overall performance. Meanwhile, GSLM refines the evolving graph structure constructed from the LM's output, offering updated labels back to the LM as additional guidance, thus facilitating a more effective mutual learning process. The LM and GSLM work synergistically, complementing each other's strengths and offsetting weaknesses within a variational information-maximizing framework, resulting in enhanced node features and a more robust graph structure. Extensive experiments on diverse graph datasets of varying scales and across different task scenarios demonstrate the scalability and effectiveness of the proposed approach.
Abstract:With growing demands for data privacy and model robustness, graph unlearning (GU), which erases the influence of specific data on trained GNN models, has gained significant attention. However, existing exact unlearning methods suffer from either low efficiency or poor model performance. While being more utility-preserving and efficient, current approximate unlearning methods are not applicable in the zero-glance privacy setting, where the deleted samples cannot be accessed during unlearning due to immediate deletion requested by regulations. Besides, these approximate methods, which try to directly perturb model parameters still involve high privacy concerns in practice. To fill the gap, we propose Transferable Condensation Graph Unlearning (TCGU), a data-centric solution to zero-glance graph unlearning. Specifically, we first design a two-level alignment strategy to pre-condense the original graph into a small yet utility-preserving dataset. Upon receiving an unlearning request, we fine-tune the pre-condensed data with a low-rank plugin, to directly align its distribution with the remaining graph, thus efficiently revoking the information of deleted data without accessing them. A novel similarity distribution matching approach and a discrimination regularizer are proposed to effectively transfer condensed data and preserve its utility in GNN training, respectively. Finally, we retrain the GNN on the transferred condensed data. Extensive experiments on 6 benchmark datasets demonstrate that TCGU can achieve superior performance in terms of model utility, unlearning efficiency, and unlearning efficacy than existing GU methods.
Abstract:Graph Neural Networks (GNNs) are vital in data science but are increasingly susceptible to adversarial attacks. To help researchers develop more robust GNN models, it's essential to focus on designing strong attack models as foundational benchmarks and guiding references. Among adversarial attacks, gray-box poisoning attacks are noteworthy due to their effectiveness and fewer constraints. These attacks exploit GNNs' need for retraining on updated data, thereby impacting their performance by perturbing these datasets. However, current research overlooks the real-world scenario of incomplete graphs.To address this gap, we introduce the Robust Incomplete Deep Attack Framework (RIDA). It is the first algorithm for robust gray-box poisoning attacks on incomplete graphs. The approach innovatively aggregates distant vertex information and ensures powerful data utilization.Extensive tests against 9 SOTA baselines on 3 real-world datasets demonstrate RIDA's superiority in handling incompleteness and high attack performance on the incomplete graph.
Abstract:Multi-objective optimization problems (MOPs) are prevalent in various real-world applications, necessitating sophisticated solutions that balance conflicting objectives. Traditional evolutionary algorithms (EAs), while effective, often rely on domain-specific expert knowledge and iterative tuning, which can impede innovation when encountering novel MOPs. Very recently, the emergence of Large Language Models (LLMs) has revolutionized software engineering by enabling the autonomous development and refinement of programs. Capitalizing on this advancement, we propose a new LLM-based framework for evolving EA operators, designed to address a wide array of MOPs. This framework facilitates the production of EA operators without the extensive demands for expert intervention, thereby streamlining the design process. To validate the efficacy of our approach, we have conducted extensive empirical studies across various categories of MOPs. The results demonstrate the robustness and superior performance of our LLM-evolved operators.
Abstract:Large model training has been using recomputation to alleviate the memory pressure and pipelining to exploit the parallelism of data, tensor, and devices. The existing recomputation approaches may incur up to 40% overhead when training real-world models, e.g., the GPT model with 22B parameters. This is because they are executed on demand in the critical training path. In this paper, we design a new recomputation framework, Lynx, to reduce the overhead by overlapping the recomputation with communication occurring in training pipelines. It consists of an optimal scheduling algorithm (OPT) and a heuristic-based scheduling algorithm (HEU). OPT achieves a global optimum but suffers from a long search time. HEU was designed based on our observation that there are identical structures in large DNN models so that we can apply the same scheduling policy to all identical structures. HEU achieves a local optimum but reduces the search time by 99% compared to OPT. Our comprehensive evaluation using GPT models with 1.3B-20B parameters shows that both OPT and HEU outperform the state-of-the-art recomputation approaches (e.g., Megatron-LM and Checkmake) by 1.02-1.53x. HEU achieves a similar performance as OPT with a search time of 0.16s on average.
Abstract:We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named $\text{Seed-TTS}_\text{DiT}$, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, $\text{Seed-TTS}_\text{DiT}$ does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at \url{https://bytedancespeech.github.io/seedtts_tech_report}.
Abstract:The use of question-answer (QA) pairs for training and evaluating large language models (LLMs) has attracted considerable attention. Yet few available QA datasets are based on knowledge from the scientific literature. Here we bridge this gap by presenting Automatic Generation of Scientific Question Answers (SciQAG), a framework for automatic generation and evaluation of scientific QA pairs sourced from published scientific literature. We fine-tune an open-source LLM to generate \num{960000} scientific QA pairs from full-text scientific papers and propose a five-dimensional metric to evaluate the quality of the generated QA pairs. We show via LLM-based evaluation that the generated QA pairs consistently achieve an average score of 2.5 out of 3 across five dimensions, indicating that our framework can distill key knowledge from papers into high-quality QA pairs at scale. We make the dataset, models, and evaluation codes publicly available.