Abstract:Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.
Abstract:The offline-to-online (O2O) paradigm in reinforcement learning (RL) utilizes pre-trained models on offline datasets for subsequent online fine-tuning. However, conventional O2O RL algorithms typically require maintaining and retraining the large offline datasets to mitigate the effects of out-of-distribution (OOD) data, which limits their efficiency in exploiting online samples. To address this challenge, we introduce a new paradigm called SAMG: State-Action-Conditional Offline-to-Online Reinforcement Learning with Offline Model Guidance. In particular, rather than directly training on offline data, SAMG freezes the pre-trained offline critic to provide offline values for each state-action pair to deliver compact offline information. This framework eliminates the need for retraining with offline data by freezing and leveraging these values of the offline model. These are then incorporated with the online target critic using a Bellman equation weighted by a policy state-action-aware coefficient. This coefficient, derived from a conditional variational auto-encoder (C-VAE), aims to capture the reliability of the offline data on a state-action level. SAMG could be easily integrated with existing Q-function based O2O RL algorithms. Theoretical analysis shows good optimality and lower estimation error of SAMG. Empirical evaluations demonstrate that SAMG outperforms four state-of-the-art O2O RL algorithms in the D4RL benchmark.
Abstract:Vision-based 3D semantic scene completion (SSC) describes autonomous driving scenes through 3D volume representations. However, the occlusion of invisible voxels by scene surfaces poses challenges to current SSC methods in hallucinating refined 3D geometry. This paper proposes HybridOcc, a hybrid 3D volume query proposal method generated by Transformer framework and NeRF representation and refined in a coarse-to-fine SSC prediction framework. HybridOcc aggregates contextual features through the Transformer paradigm based on hybrid query proposals while combining it with NeRF representation to obtain depth supervision. The Transformer branch contains multiple scales and uses spatial cross-attention for 2D to 3D transformation. The newly designed NeRF branch implicitly infers scene occupancy through volume rendering, including visible and invisible voxels, and explicitly captures scene depth rather than generating RGB color. Furthermore, we present an innovative occupancy-aware ray sampling method to orient the SSC task instead of focusing on the scene surface, further improving the overall performance. Extensive experiments on nuScenes and SemanticKITTI datasets demonstrate the effectiveness of our HybridOcc on the SSC task.
Abstract:Accurate and robust multimodal multi-task perception is crucial for modern autonomous driving systems. However, current multimodal perception research follows independent paradigms designed for specific perception tasks, leading to a lack of complementary learning among tasks and decreased performance in multi-task learning (MTL) due to joint training. In this paper, we propose MaskBEV, a masked attention-based MTL paradigm that unifies 3D object detection and bird's eye view (BEV) map segmentation. MaskBEV introduces a task-agnostic Transformer decoder to process these diverse tasks, enabling MTL to be completed in a unified decoder without requiring additional design of specific task heads. To fully exploit the complementary information between BEV map segmentation and 3D object detection tasks in BEV space, we propose spatial modulation and scene-level context aggregation strategies. These strategies consider the inherent dependencies between BEV segmentation and 3D detection, naturally boosting MTL performance. Extensive experiments on nuScenes dataset show that compared with previous state-of-the-art MTL methods, MaskBEV achieves 1.3 NDS improvement in 3D object detection and 2.7 mIoU improvement in BEV map segmentation, while also demonstrating slightly leading inference speed.
Abstract:Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. Most MSA efforts are based on the assumption of modality completeness. However, in real-world applications, some practical factors cause uncertain modality missingness, which drastically degrades the model's performance. To this end, we propose a Correlation-decoupled Knowledge Distillation (CorrKD) framework for the MSA task under uncertain missing modalities. Specifically, we present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics. Moreover, a category-guided prototype distillation mechanism is introduced to capture cross-category correlations using category prototypes to align feature distributions and generate favorable joint representations. Eventually, we design a response-disentangled consistency distillation strategy to optimize the sentiment decision boundaries of the student network through response disentanglement and mutual information maximization. Comprehensive experiments on three datasets indicate that our framework can achieve favorable improvements compared with several baselines.
Abstract:Binary code representation learning has shown significant performance in binary analysis tasks. But existing solutions often have poor transferability, particularly in few-shot and zero-shot scenarios where few or no training samples are available for the tasks. To address this problem, we present CLAP (Contrastive Language-Assembly Pre-training), which employs natural language supervision to learn better representations of binary code (i.e., assembly code) and get better transferability. At the core, our approach boosts superior transfer learning capabilities by effectively aligning binary code with their semantics explanations (in natural language), resulting a model able to generate better embeddings for binary code. To enable this alignment training, we then propose an efficient dataset engine that could automatically generate a large and diverse dataset comprising of binary code and corresponding natural language explanations. We have generated 195 million pairs of binary code and explanations and trained a prototype of CLAP. The evaluations of CLAP across various downstream tasks in binary analysis all demonstrate exceptional performance. Notably, without any task-specific training, CLAP is often competitive with a fully supervised baseline, showing excellent transferability. We release our pre-trained model and code at https://github.com/Hustcw/CLAP.
Abstract:In this paper, we scale evolutionary algorithms to high-dimensional optimization problems that deceptively possess a low effective dimensionality (certain dimensions do not significantly affect the objective function). To this end, an instantiation of the multiform optimization paradigm is presented, where multiple low-dimensional counterparts of a target high-dimensional task are generated via random embeddings. Since the exact relationship between the auxiliary (low-dimensional) tasks and the target is a priori unknown, a multiform evolutionary algorithm is developed for unifying all formulations into a single multi-task setting. The resultant joint optimization enables the target task to efficiently reuse solutions evolved across various low-dimensional searches via cross-form genetic transfers, hence speeding up overall convergence characteristics. To validate the overall efficacy of our proposed algorithmic framework, comprehensive experimental studies are carried out on well-known continuous benchmark functions as well as a set of practical problems in the hyper-parameter tuning of machine learning models and deep learning models in classification tasks and Predator-Prey games, respectively.
Abstract:Data is a critical asset in AI, as high-quality datasets can significantly improve the performance of machine learning models. In safety-critical domains such as autonomous vehicles, offline deep reinforcement learning (offline DRL) is frequently used to train models on pre-collected datasets, as opposed to training these models by interacting with the real-world environment as the online DRL. To support the development of these models, many institutions make datasets publicly available with opensource licenses, but these datasets are at risk of potential misuse or infringement. Injecting watermarks to the dataset may protect the intellectual property of the data, but it cannot handle datasets that have already been published and is infeasible to be altered afterward. Other existing solutions, such as dataset inference and membership inference, do not work well in the offline DRL scenario due to the diverse model behavior characteristics and offline setting constraints. In this paper, we advocate a new paradigm by leveraging the fact that cumulative rewards can act as a unique identifier that distinguishes DRL models trained on a specific dataset. To this end, we propose ORL-AUDITOR, which is the first trajectory-level dataset auditing mechanism for offline RL scenarios. Our experiments on multiple offline DRL models and tasks reveal the efficacy of ORL-AUDITOR, with auditing accuracy over 95% and false positive rates less than 2.88%. We also provide valuable insights into the practical implementation of ORL-AUDITOR by studying various parameter settings. Furthermore, we demonstrate the auditing capability of ORL-AUDITOR on open-source datasets from Google and DeepMind, highlighting its effectiveness in auditing published datasets. ORL-AUDITOR is open-sourced at https://github.com/link-zju/ORL-Auditor.
Abstract:A human 3D avatar is one of the important elements in the metaverse, and the modeling effect directly affects people's visual experience. However, the human body has a complex topology and diverse details, so it is often expensive, time-consuming, and laborious to build a satisfactory model. Recent studies have proposed a novel method, implicit neural representation, which is a continuous representation method and can describe objects with arbitrary topology at arbitrary resolution. Researchers have applied implicit neural representation to human 3D avatar modeling and obtained more excellent results than traditional methods. This paper comprehensively reviews the application of implicit neural representation in human body modeling. First, we introduce three implicit representations of occupancy field, SDF, and NeRF, and make a classification of the literature investigated in this paper. Then the application of implicit modeling methods in the body, hand, and head are compared and analyzed respectively. Finally, we point out the shortcomings of current work and provide available suggestions for researchers.
Abstract:Semantic-oriented communication has been considered as a promising to boost the bandwidth efficiency by only transmitting the semantics of the data. In this paper, we propose a multi-level semantic aware communication system for wireless image transmission, named MLSC-image, which is based on the deep learning techniques and trained in an end to end manner. In particular, the proposed model includes a multilevel semantic feature extractor, that extracts both the highlevel semantic information, such as the text semantics and the segmentation semantics, and the low-level semantic information, such as local spatial details of the images. We employ a pretrained image caption to capture the text semantics and a pretrained image segmentation model to obtain the segmentation semantics. These high-level and low-level semantic features are then combined and encoded by a joint semantic and channel encoder into symbols to transmit over the physical channel. The numerical results validate the effectiveness and efficiency of the proposed semantic communication system, especially under the limited bandwidth condition, which indicates the advantages of the high-level semantics in the compression of images.