Abstract:Short-term traffic volume prediction is crucial for intelligent transportation system and there are many researches focusing on this field. However, most of these existing researches concentrated on refining model architecture and ignored amount of training data. Therefore, there remains a noticeable gap in thoroughly exploring the effect of augmented dataset, especially extensive historical data in training. In this research, two datasets containing taxi and bike usage spanning over eight years in New York were used to test such effects. Experiments were conducted to assess the precision of models trained with data in the most recent 12, 24, 48, and 96 months. It was found that the training set encompassing 96 months, at times, resulted in diminished accuracy, which might be owing to disparities between historical traffic patterns and present ones. An analysis was subsequently undertaken to discern potential sources of inconsistent patterns, which may include both covariate shift and concept shift. To address these shifts, we proposed an innovative approach that aligns covariate distributions using a weighting scheme to manage covariate shift, coupled with an environment aware learning method to tackle the concept shift. Experiments based on real word datasets demonstrate the effectiveness of our method which can significantly decrease testing errors and ensure an improvement in accuracy when training with large-scale historical data. As far as we know, this work is the first attempt to assess the impact of contiguously expanding training dataset on the accuracy of traffic prediction models. Besides, our training method is able to be incorporated into most existing short-term traffic prediction models and make them more suitable for long term historical training dataset.
Abstract:Accurate short-term passenger flow prediction of subway stations plays a vital role in enabling subway station personnel to proactively address changes in passenger volume. Despite existing literature in this field, there is a lack of research on effectively integrating features from different periods, particularly intra-period and inter-period features, for subway station passenger flow prediction. In this paper, we propose a novel model called \textbf{M}uti \textbf{P}eriod \textbf{S}patial \textbf{T}emporal \textbf{N}etwork \textbf{MPSTN}) that leverages features from different periods by transforming one-dimensional time series data into two-dimensional matrices based on periods. The folded matrices exhibit structural characteristics similar to images, enabling the utilization of image processing techniques, specifically convolutional neural networks (CNNs), to integrate features from different periods. Therefore, our MPSTN model incorporates a CNN module to extract temporal information from different periods and a graph neural network (GNN) module to integrate spatial information from different stations. We compared our approach with various state-of-the-art methods for spatiotemporal data prediction using a publicly available dataset and achieved minimal prediction errors. The code for our model is publicly available in the following repository: https://github.com/xiannanhuang/MPSTN
Abstract:Large language models are typically fine-tuned to align with human preferences, but tuning large models is computationally intensive and complex. In this work, we introduce $\textit{Integrated Value Guidance}$ (IVG), a method that uses implicit and explicit value functions to guide language model decoding at token and chunk-level respectively, efficiently aligning large language models purely at inference time. This approach circumvents the complexities of direct fine-tuning and outperforms traditional methods. Empirically, we demonstrate the versatility of IVG across various tasks. In controlled sentiment generation and summarization tasks, our method significantly improves the alignment of large models using inference-time guidance from $\texttt{gpt2}$-based value functions. Moreover, in a more challenging instruction-following benchmark AlpacaEval 2.0, we show that both specifically tuned and off-the-shelf value functions greatly improve the length-controlled win rates of large models against $\texttt{gpt-4-turbo}$ (e.g., $19.51\% \rightarrow 26.51\%$ for $\texttt{Mistral-7B-Instruct-v0.2}$ and $25.58\% \rightarrow 33.75\%$ for $\texttt{Mixtral-8x7B-Instruct-v0.1}$ with Tulu guidance).
Abstract:Ensuring that the outputs of neural networks satisfy specific constraints is crucial for applying neural networks to real-life decision-making problems. In this paper, we consider making a batch of neural network outputs satisfy bounded and general linear constraints. We first reformulate the neural network output projection problem as an entropy-regularized linear programming problem. We show that such a problem can be equivalently transformed into an unconstrained convex optimization problem with Lipschitz continuous gradient according to the duality theorem. Then, based on an accelerated gradient descent algorithm with numerical performance enhancement, we present our architecture, GLinSAT, to solve the problem. To the best of our knowledge, this is the first general linear satisfiability layer in which all the operations are differentiable and matrix-factorization-free. Despite the fact that we can explicitly perform backpropagation based on automatic differentiation mechanism, we also provide an alternative approach in GLinSAT to calculate the derivatives based on implicit differentiation of the optimality condition. Experimental results on constrained traveling salesman problems, partial graph matching with outliers, predictive portfolio allocation and power system unit commitment demonstrate the advantages of GLinSAT over existing satisfiability layers.
Abstract:Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users' short-term preference capture and aims to provide a more dynamic and timely recommendation based on the ongoing interacted actions. In this survey, we will give a comprehensive overview of the recent works on SR. First, we clarify the definitions of various SR tasks and introduce the characteristics of session-based recommendation against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The standard frameworks and technical are also introduced. Finally, we discuss the challenges of SR and new research directions in this area.
Abstract:In challenging low light and adverse weather conditions,thermal vision algorithms,especially object detection,have exhibited remarkable potential,contrasting with the frequent struggles encountered by visible vision algorithms. Nevertheless,the efficacy of thermal vision algorithms driven by deep learning models remains constrained by the paucity of available training data samples. To this end,this paper introduces a novel approach termed the edge guided conditional diffusion model. This framework aims to produce meticulously aligned pseudo thermal images at the pixel level,leveraging edge information extracted from visible images. By utilizing edges as contextual cues from the visible domain,the diffusion model achieves meticulous control over the delineation of objects within the generated images. To alleviate the impacts of those visible-specific edge information that should not appear in the thermal domain,a two-stage modality adversarial training strategy is proposed to filter them out from the generated images by differentiating the visible and thermal modality. Extensive experiments on LLVIP demonstrate ECDM s superiority over existing state-of-the-art approaches in terms of image generation quality.
Abstract:Large language models (LLMs) now support extremely long context windows, but the quadratic complexity of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Existing approaches to address this complexity require additional pretraining or finetuning, and often sacrifice model accuracy. In this paper, we first provide both theoretical and empirical foundations for near-lossless sparse attention. We find dynamically capturing head-specific sparse patterns at runtime with low overhead is crucial. To address this, we propose SampleAttention, an adaptive structured and near-lossless sparse attention. Leveraging observed significant sparse patterns, SampleAttention attends to a fixed percentage of adjacent tokens to capture local window patterns, and employs a two-stage query-guided key-value filtering approach, which adaptively select a minimum set of key-values with low overhead, to capture column stripe patterns. Comprehensive evaluations show that SampleAttention can seamlessly replace vanilla attention in off-the-shelf LLMs with nearly no accuracy loss, and reduces TTFT by up to $2.42\times$ compared with FlashAttention.
Abstract:Direct Preference Optimization (DPO), a standard method for aligning language models with human preferences, is traditionally applied to offline preferences. Recent studies show that DPO benefits from iterative training with online preferences labeled by a trained reward model. In this work, we identify a pitfall of vanilla iterative DPO - improved response quality can lead to increased verbosity. To address this, we introduce iterative length-regularized DPO (iLR-DPO) to penalize response length. Our empirical results show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 without increasing verbosity. Specifically, our 7B model achieves a $50.5\%$ length-controlled win rate against $\texttt{GPT-4 Preview}$ on AlpacaEval 2.0, and excels across standard benchmarks including MT-Bench, Arena-Hard and OpenLLM Leaderboard. These results demonstrate the effectiveness of iterative DPO in aligning language models with human feedback.
Abstract:Large language models (LLMs) now support extremely long context windows, but the quadratic complexity of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Existing approaches to address this complexity require additional pretraining or finetuning, and often sacrifice model accuracy. In this paper, we first provide both theoretical and empirical foundations for near-lossless sparse attention. We find dynamically capturing head-specific sparse patterns at runtime with low overhead is crucial. To address this, we propose SampleAttention, an adaptive structured and near-lossless sparse attention. Leveraging observed significant sparse patterns, SampleAttention attends to a fixed percentage of adjacent tokens to capture local window patterns, and employs a two-stage query-guided key-value filtering approach, which adaptively select a minimum set of key-values with low overhead, to capture column stripe patterns. Comprehensive evaluations show that SampleAttention can seamlessly replace vanilla attention in off-the-shelf LLMs with nearly no accuracy loss, and reduces TTFT by up to $2.42\times$ compared with FlashAttention.
Abstract:Our goal is to $\textit{efficiently}$ discover a compact set of temporal logic rules to explain irregular events of interest. We introduce a neural-symbolic rule induction framework within the temporal point process model. The negative log-likelihood is the loss that guides the learning, where the explanatory logic rules and their weights are learned end-to-end in a $\textit{differentiable}$ way. Specifically, predicates and logic rules are represented as $\textit{vector embeddings}$, where the predicate embeddings are fixed and the rule embeddings are trained via gradient descent to obtain the most appropriate compositional representations of the predicate embeddings. To make the rule learning process more efficient and flexible, we adopt a $\textit{sequential covering algorithm}$, which progressively adds rules to the model and removes the event sequences that have been explained until all event sequences have been covered. All the found rules will be fed back to the models for a final rule embedding and weight refinement. Our approach showcases notable efficiency and accuracy across synthetic and real datasets, surpassing state-of-the-art baselines by a wide margin in terms of efficiency.