Abstract:This report is the system description of the BeeManc team for shared task Plain Language Adaptation of Biomedical Abstracts (PLABA) 2024. This report contains two sections corresponding to the two sub-tasks in PLABA 2024. In task one, we applied fine-tuned ReBERTa-Base models to identify and classify the difficult terms, jargon and acronyms in the biomedical abstracts and reported the F1 score. Due to time constraints, we didn't finish the replacement task. In task two, we leveraged Llamma3.1-70B-Instruct and GPT-4o with the one-shot prompts to complete the abstract adaptation and reported the scores in BLEU, SARI, BERTScore, LENS, and SALSA. From the official Evaluation from PLABA-2024 on Task 1A and 1B, our \textbf{much smaller fine-tuned RoBERTa-Base} model ranked 3rd and 2nd respectively on the two sub-task, and the \textbf{1st on averaged F1 scores across the two tasks} from 9 evaluated systems. Our share our fine-tuned models and related resources at \url{https://github.com/HECTA-UoM/PLABA2024}
Abstract:Link prediction is a critical problem in graph learning with broad applications such as recommender systems and knowledge graph completion. Numerous research efforts have been directed at solving this problem, including approaches based on similarity metrics and Graph Neural Networks (GNN). However, most existing solutions are still rooted in conventional supervised learning, which makes it challenging to adapt over time to changing customer interests and to address the inherent dilemma of exploitation versus exploration in link prediction. To tackle these challenges, this paper reformulates link prediction as a sequential decision-making process, where each link prediction interaction occurs sequentially. We propose a novel fusion algorithm, PRB (PageRank Bandits), which is the first to combine contextual bandits with PageRank for collaborative exploitation and exploration. We also introduce a new reward formulation and provide a theoretical performance guarantee for PRB. Finally, we extensively evaluate PRB in both online and offline settings, comparing it with bandit-based and graph-based methods. The empirical success of PRB demonstrates the value of the proposed fusion approach. Our code is released at https://github.com/jiaruzouu/PRB.
Abstract:Despite the widespread success of Transformers across various domains, their optimization guarantees in large-scale model settings are not well-understood. This paper rigorously analyzes the convergence properties of gradient flow in training Transformers with weight decay regularization. First, we construct the mean-field limit of large-scale Transformers, showing that as the model width and depth go to infinity, gradient flow converges to the Wasserstein gradient flow, which is represented by a partial differential equation. Then, we demonstrate that the gradient flow reaches a global minimum consistent with the PDE solution when the weight decay regularization parameter is sufficiently small. Our analysis is based on a series of novel mean-field techniques that adapt to Transformers. Compared with existing tools for deep networks (Lu et al., 2020) that demand homogeneity and global Lipschitz smoothness, we utilize a refined analysis assuming only $\textit{partial homogeneity}$ and $\textit{local Lipschitz smoothness}$. These new techniques may be of independent interest.
Abstract:The autonomous driving industry is rapidly advancing, with Vehicle-to-Vehicle (V2V) communication systems highlighting as a key component of enhanced road safety and traffic efficiency. This paper introduces a novel Real-time Vehicle-to-Vehicle Communication Based Network Cooperative Control System (VVCCS), designed to revolutionize macro-scope traffic planning and collision avoidance in autonomous driving. Implemented on Quanser Car (Qcar) hardware platform, our system integrates the distributed databases into individual autonomous vehicles and an optional central server. We also developed a comprehensive multi-modal perception system with multi-objective tracking and radar sensing. Through a demonstration within a physical crossroad environment, our system showcases its potential to be applied in congested and complex urban environments.
Abstract:Hypergraphs naturally arise when studying group relations and have been widely used in the field of machine learning. There has not been a unified formulation of hypergraphs, yet the recently proposed edge-dependent vertex weights (EDVW) modeling is one of the most generalized modeling methods of hypergraphs, i.e., most existing hypergraphs can be formulated as EDVW hypergraphs without any information loss to the best of our knowledge. However, the relevant algorithmic developments on EDVW hypergraphs remain nascent: compared to spectral graph theories, the formulations are incomplete, the spectral clustering algorithms are not well-developed, and one result regarding hypergraph Cheeger Inequality is even incorrect. To this end, deriving a unified random walk-based formulation, we propose our definitions of hypergraph Rayleigh Quotient, NCut, boundary/cut, volume, and conductance, which are consistent with the corresponding definitions on graphs. Then, we prove that the normalized hypergraph Laplacian is associated with the NCut value, which inspires our HyperClus-G algorithm for spectral clustering on EDVW hypergraphs. Finally, we prove that HyperClus-G can always find an approximately linearly optimal partitioning in terms of Both NCut and conductance. Additionally, we provide extensive experiments to validate our theoretical findings from an empirical perspective.
Abstract:Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data. When analyzing a graph's statistical properties, graph laws serve as essential tools for parameterizing its structure. Identifying meaningful graph laws can significantly enhance the effectiveness of various applications, such as graph generation and link prediction. Facing the large-scale foundation model developments nowadays, the study of graph laws reveals new research potential, e.g., providing multi-modal information for graph neural representation learning and breaking the domain inconsistency of different graph data. In this survey, we first review the previous study of graph laws from multiple perspectives, i.e., macroscope and microscope of graphs, low-order and high-order graphs, static and dynamic graphs, different observation spaces, and newly proposed graph parameters. After we review various real-world applications benefiting from the guidance of graph laws, we conclude the paper with current challenges and future research directions.
Abstract:In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an open-ended generation benchmark developed in this study. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability.
Abstract:Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users' short-term preference capture and aims to provide a more dynamic and timely recommendation based on the ongoing interacted actions. In this survey, we will give a comprehensive overview of the recent works on SR. First, we clarify the definitions of various SR tasks and introduce the characteristics of session-based recommendation against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The standard frameworks and technical are also introduced. Finally, we discuss the challenges of SR and new research directions in this area.
Abstract:In this system report, we describe the models and methods we used for our participation in the PLABA2023 task on biomedical abstract simplification, part of the TAC 2023 tracks. The system outputs we submitted come from the following three categories: 1) domain fine-tuned T5-like models including Biomedical-T5 and Lay-SciFive; 2) fine-tuned BARTLarge model with controllable attributes (via tokens) BART-w-CTs; 3) ChatGPTprompting. We also present the work we carried out for this task on BioGPT finetuning. In the official automatic evaluation using SARI scores, BeeManc ranks 2nd among all teams and our model LaySciFive ranks 3rd among all 13 evaluated systems. In the official human evaluation, our model BART-w-CTs ranks 2nd on Sentence-Simplicity (score 92.84), 3rd on Term-Simplicity (score 82.33) among all 7 evaluated systems; It also produced a high score 91.57 on Fluency in comparison to the highest score 93.53. In the second round of submissions, our team using ChatGPT-prompting ranks the 2nd in several categories including simplified term accuracy score 92.26 and completeness score 96.58, and a very similar score on faithfulness score 95.3 to re-evaluated PLABA-base-1 (95.73) via human evaluations. Our codes, fine-tuned models, prompts, and data splits from the system development stage will be available at https://github.com/ HECTA-UoM/PLABA-MU
Abstract:Recent advancements in Large Language Models (LLMs) have sparked interest in their potential applications across various fields. This paper embarked on a pivotal inquiry: Can existing LLMs effectively serve as "water expert models" for water engineering and research tasks? This study was the first to evaluate LLMs' contributions across various water engineering and research tasks by establishing a domain-specific benchmark suite, namely, WaterER. Herein, we prepared 983 tasks related to water engineering and research, categorized into "wastewater treatment", "environmental restoration", "drinking water treatment and distribution", "sanitation", "anaerobic digestion" and "contaminants assessment". We evaluated the performance of seven LLMs (i.e., GPT-4, GPT-3.5, Gemini, GLM-4, ERNIE, QWEN and Llama3) on these tasks. We highlighted the strengths of GPT-4 in handling diverse and complex tasks of water engineering and water research, the specialized capabilities of Gemini in academic contexts, Llama3's strongest capacity to answer Chinese water engineering questions and the competitive performance of Chinese-oriented models like GLM-4, ERNIE and QWEN in some water engineering tasks. More specifically, current LLMs excelled particularly in generating precise research gaps for papers on "contaminants and related water quality monitoring and assessment". Additionally, they were more adept at creating appropriate titles for research papers on "treatment processes for wastewaters", "environmental restoration", and "drinking water treatment". Overall, this study pioneered evaluating LLMs in water engineering and research by introducing the WaterER benchmark to assess the trustworthiness of their predictions. This standardized evaluation framework would also drive future advancements in LLM technology by using targeting datasets, propelling these models towards becoming true "water expert".