Abstract:Graph Self-Supervised Learning (SSL) has emerged as a pivotal area of research in recent years. By engaging in pretext tasks to learn the intricate topological structures and properties of graphs using unlabeled data, these graph SSL models achieve enhanced performance, improved generalization, and heightened robustness. Despite the remarkable achievements of these graph SSL methods, their current implementation poses significant challenges for beginners and practitioners due to the complex nature of graph structures, inconsistent evaluation metrics, and concerns regarding reproducibility hinder further progress in this field. Recognizing the growing interest within the research community, there is an urgent need for a comprehensive, beginner-friendly, and accessible toolkit consisting of the most representative graph SSL algorithms. To address these challenges, we present a Graph SSL toolkit named PyG-SSL, which is built upon PyTorch and is compatible with various deep learning and scientific computing backends. Within the toolkit, we offer a unified framework encompassing dataset loading, hyper-parameter configuration, model training, and comprehensive performance evaluation for diverse downstream tasks. Moreover, we provide beginner-friendly tutorials and the best hyper-parameters of each graph SSL algorithm on different graph datasets, facilitating the reproduction of results. The GitHub repository of the library is https://github.com/iDEA-iSAIL-Lab-UIUC/pyg-ssl.
Abstract:Knowledge graphs (KGs), which store an extensive number of relational facts, serve various applications. Recently, personalized knowledge graphs (PKGs) have emerged as a solution to optimize storage costs by customizing their content to align with users' specific interests within particular domains. In the real world, on one hand, user queries and their underlying interests are inherently evolving, requiring PKGs to adapt continuously; on the other hand, the summarization is constantly expected to be as small as possible in terms of storage cost. However, the existing PKG summarization methods implicitly assume that the user's interests are constant and do not shift. Furthermore, when the size constraint of PKG is extremely small, the existing methods cannot distinguish which facts are more of immediate interest and guarantee the utility of the summarized PKG. To address these limitations, we propose APEX$^2$, a highly scalable PKG summarization framework designed with robust theoretical guarantees to excel in adaptive summarization tasks with extremely small size constraints. To be specific, after constructing an initial PKG, APEX$^2$ continuously tracks the interest shift and adjusts the previous summary. We evaluate APEX$^2$ under an evolving query setting on benchmark KGs containing up to 12 million triples, summarizing with compression ratios $\leq 0.1\%$. The experiments show that APEX outperforms state-of-the-art baselines in terms of both query-answering accuracy and efficiency.
Abstract:While great success has been achieved in building vision models with Contrastive Language-Image Pre-training (CLIP) over Internet-scale image-text pairs, building transferable Graph Neural Networks (GNNs) with CLIP pipeline is challenging because of three fundamental issues: the scarcity of labeled data and text supervision, different levels of downstream tasks, and the conceptual gaps between domains. In this work, to address these issues, we leverage multi-modal prompt learning to effectively adapt pre-trained GNN to downstream tasks and data, given only a few semantically labeled samples, each with extremely weak text supervision. Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously. To accomplish this, we improve state-of-the-art graph prompt method, and then propose the first graph-language multi-modal prompt learning approach for exploiting the knowledge in pre-trained models. Notably, due to the insufficient supervision for fine-tuning, in our paradigm, the pre-trained GNN and the LLM are kept frozen, so the learnable parameters are much fewer than fine-tuning any pre-trained model. Through extensive experiments on real-world datasets, we demonstrate the superior performance of our paradigm in few-shot, multi-task-level, and cross-domain settings. Moreover, we build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision.
Abstract:Local clustering aims to find a compact cluster near the given starting instances. This work focuses on graph local clustering, which has broad applications beyond graphs because of the internal connectivities within various modalities. While most existing studies on local graph clustering adopt the discrete graph setting (i.e., unweighted graphs without self-loops), real-world graphs can be more complex. In this paper, we extend the non-approximating Andersen-Chung-Lang ("ACL") algorithm beyond discrete graphs and generalize its quadratic optimality to a wider range of graphs, including weighted, directed, and self-looped graphs and hypergraphs. Specifically, leveraging PageRank, we propose two algorithms: GeneralACL for graphs and HyperACL for hypergraphs. We theoretically prove that, under two mild conditions, both algorithms can identify a quadratically optimal local cluster in terms of conductance with at least 1/2 probability. On the property of hypergraphs, we address a fundamental gap in the literature by defining conductance for hypergraphs from the perspective of hypergraph random walks. Additionally, we provide experiments to validate our theoretical findings.
Abstract:Transformers have achieved great success in recent years. Interestingly, transformers have shown particularly strong in-context learning capability -- even without fine-tuning, they are still able to solve unseen tasks well purely based on task-specific prompts. In this paper, we study the capability of one-layer transformers in learning one of the most classical nonparametric estimators, the one-nearest neighbor prediction rule. Under a theoretical framework where the prompt contains a sequence of labeled training data and unlabeled test data, we show that, although the loss function is nonconvex when trained with gradient descent, a single softmax attention layer can successfully learn to behave like a one-nearest neighbor classifier. Our result gives a concrete example of how transformers can be trained to implement nonparametric machine learning algorithms, and sheds light on the role of softmax attention in transformer models.
Abstract:This report is the system description of the BeeManc team for shared task Plain Language Adaptation of Biomedical Abstracts (PLABA) 2024. This report contains two sections corresponding to the two sub-tasks in PLABA 2024. In task one, we applied fine-tuned ReBERTa-Base models to identify and classify the difficult terms, jargon and acronyms in the biomedical abstracts and reported the F1 score. Due to time constraints, we didn't finish the replacement task. In task two, we leveraged Llamma3.1-70B-Instruct and GPT-4o with the one-shot prompts to complete the abstract adaptation and reported the scores in BLEU, SARI, BERTScore, LENS, and SALSA. From the official Evaluation from PLABA-2024 on Task 1A and 1B, our \textbf{much smaller fine-tuned RoBERTa-Base} model ranked 3rd and 2nd respectively on the two sub-task, and the \textbf{1st on averaged F1 scores across the two tasks} from 9 evaluated systems. Our share our fine-tuned models and related resources at \url{https://github.com/HECTA-UoM/PLABA2024}
Abstract:Link prediction is a critical problem in graph learning with broad applications such as recommender systems and knowledge graph completion. Numerous research efforts have been directed at solving this problem, including approaches based on similarity metrics and Graph Neural Networks (GNN). However, most existing solutions are still rooted in conventional supervised learning, which makes it challenging to adapt over time to changing customer interests and to address the inherent dilemma of exploitation versus exploration in link prediction. To tackle these challenges, this paper reformulates link prediction as a sequential decision-making process, where each link prediction interaction occurs sequentially. We propose a novel fusion algorithm, PRB (PageRank Bandits), which is the first to combine contextual bandits with PageRank for collaborative exploitation and exploration. We also introduce a new reward formulation and provide a theoretical performance guarantee for PRB. Finally, we extensively evaluate PRB in both online and offline settings, comparing it with bandit-based and graph-based methods. The empirical success of PRB demonstrates the value of the proposed fusion approach. Our code is released at https://github.com/jiaruzouu/PRB.
Abstract:Despite the widespread success of Transformers across various domains, their optimization guarantees in large-scale model settings are not well-understood. This paper rigorously analyzes the convergence properties of gradient flow in training Transformers with weight decay regularization. First, we construct the mean-field limit of large-scale Transformers, showing that as the model width and depth go to infinity, gradient flow converges to the Wasserstein gradient flow, which is represented by a partial differential equation. Then, we demonstrate that the gradient flow reaches a global minimum consistent with the PDE solution when the weight decay regularization parameter is sufficiently small. Our analysis is based on a series of novel mean-field techniques that adapt to Transformers. Compared with existing tools for deep networks (Lu et al., 2020) that demand homogeneity and global Lipschitz smoothness, we utilize a refined analysis assuming only $\textit{partial homogeneity}$ and $\textit{local Lipschitz smoothness}$. These new techniques may be of independent interest.
Abstract:Hypergraphs naturally arise when studying group relations and have been widely used in the field of machine learning. There has not been a unified formulation of hypergraphs, yet the recently proposed edge-dependent vertex weights (EDVW) modeling is one of the most generalized modeling methods of hypergraphs, i.e., most existing hypergraphs can be formulated as EDVW hypergraphs without any information loss to the best of our knowledge. However, the relevant algorithmic developments on EDVW hypergraphs remain nascent: compared to spectral graph theories, the formulations are incomplete, the spectral clustering algorithms are not well-developed, and one result regarding hypergraph Cheeger Inequality is even incorrect. To this end, deriving a unified random walk-based formulation, we propose our definitions of hypergraph Rayleigh Quotient, NCut, boundary/cut, volume, and conductance, which are consistent with the corresponding definitions on graphs. Then, we prove that the normalized hypergraph Laplacian is associated with the NCut value, which inspires our HyperClus-G algorithm for spectral clustering on EDVW hypergraphs. Finally, we prove that HyperClus-G can always find an approximately linearly optimal partitioning in terms of Both NCut and conductance. Additionally, we provide extensive experiments to validate our theoretical findings from an empirical perspective.
Abstract:The autonomous driving industry is rapidly advancing, with Vehicle-to-Vehicle (V2V) communication systems highlighting as a key component of enhanced road safety and traffic efficiency. This paper introduces a novel Real-time Vehicle-to-Vehicle Communication Based Network Cooperative Control System (VVCCS), designed to revolutionize macro-scope traffic planning and collision avoidance in autonomous driving. Implemented on Quanser Car (Qcar) hardware platform, our system integrates the distributed databases into individual autonomous vehicles and an optional central server. We also developed a comprehensive multi-modal perception system with multi-objective tracking and radar sensing. Through a demonstration within a physical crossroad environment, our system showcases its potential to be applied in congested and complex urban environments.