Abstract:Multimodal RLHF usually happens after supervised finetuning (SFT) stage to continually improve vision-language models' (VLMs) comprehension. Conventional wisdom holds its superiority over continual SFT during this preference alignment stage. In this paper, we observe that the inherent value of multimodal RLHF lies in its negative supervision, the logit of the rejected responses. We thus propose a novel negative supervised finetuning (nSFT) approach that fully excavates these information resided. Our nSFT disentangles this negative supervision in RLHF paradigm, and continually aligns VLMs with a simple SFT loss. This is more memory efficient than multimodal RLHF where 2 (e.g., DPO) or 4 (e.g., PPO) large VLMs are strictly required. The effectiveness of nSFT is rigorously proved by comparing it with various multimodal RLHF approaches, across different dataset sources, base VLMs and evaluation metrics. Besides, fruitful of ablations are provided to support our hypothesis. We hope this paper will stimulate further research to properly align large vision language models.
Abstract:We focus on improving the visual understanding capability for boosting the vision-language models. We propose \textbf{Arcana}, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``\textit{ladder}'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at \url{https://arcana-project-page.github.io}.
Abstract:The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
Abstract:Open-vocabulary object detection focusing on detecting novel categories guided by natural language. In this report, we propose Open-Vocabulary Light-Weighted Detection Transformer (OVLW-DETR), a deployment friendly open-vocabulary detector with strong performance and low latency. Building upon OVLW-DETR, we provide an end-to-end training recipe that transferring knowledge from vision-language model (VLM) to object detector with simple alignment. We align detector with the text encoder from VLM by replacing the fixed classification layer weights in detector with the class-name embeddings extracted from the text encoder. Without additional fusing module, OVLW-DETR is flexible and deployment friendly, making it easier to implement and modulate. improving the efficiency of interleaved attention computation. Experimental results demonstrate that the proposed approach is superior over existing real-time open-vocabulary detectors on standard Zero-Shot LVIS benchmark. Source code and pre-trained models are available at [https://github.com/Atten4Vis/LW-DETR].
Abstract:In this paper, we propose a novel approach to enhance medical image segmentation during test time. Instead of employing hand-crafted transforms or functions on the input test image to create multiple views for test-time augmentation, we advocate for the utilization of an advanced domain-fine-tuned generative model (GM), e.g., stable diffusion (SD), for test-time augmentation. Given that the GM has been trained to comprehend and encapsulate comprehensive domain data knowledge, it is superior than segmentation models in terms of representing the data characteristics and distribution. Hence, by integrating the GM into test-time augmentation, we can effectively generate multiple views of a given test sample, aligning with the content and appearance characteristics of the sample and the related local data distribution. This approach renders the augmentation process more adaptable and resilient compared to conventional handcrafted transforms. Comprehensive experiments conducted across three medical image segmentation tasks (nine datasets) demonstrate the efficacy and versatility of the proposed TTGA in enhancing segmentation outcomes. Moreover, TTGA significantly improves pixel-wise error estimation, thereby facilitating the deployment of a more reliable segmentation system. Code will be released at: https://github.com/maxiao0234/TTGA.
Abstract:In this paper, we present a light-weight detection transformer, LW-DETR, which outperforms YOLOs for real-time object detection. The architecture is a simple stack of a ViT encoder, a projector, and a shallow DETR decoder. Our approach leverages recent advanced techniques, such as training-effective techniques, e.g., improved loss and pretraining, and interleaved window and global attentions for reducing the ViT encoder complexity. We improve the ViT encoder by aggregating multi-level feature maps, and the intermediate and final feature maps in the ViT encoder, forming richer feature maps, and introduce window-major feature map organization for improving the efficiency of interleaved attention computation. Experimental results demonstrate that the proposed approach is superior over existing real-time detectors, e.g., YOLO and its variants, on COCO and other benchmark datasets. Code and models are available at (https://github.com/Atten4Vis/LW-DETR).
Abstract:Optical coherence tomography (OCT) image analysis plays an important role in the field of ophthalmology. Current successful analysis models rely on available large datasets, which can be challenging to be obtained for certain tasks. The use of deep generative models to create realistic data emerges as a promising approach. However, due to limitations in hardware resources, it is still difficulty to synthesize high-resolution OCT volumes. In this paper, we introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way. First, we propose non-holistic autoencoders to efficiently build a bidirectional mapping between high-resolution volume space and low-resolution latent space. In tandem with autoencoders, we propose cascaded diffusion processes to synthesize high-resolution OCT volumes with a global-to-local refinement process, amortizing the memory and computational demands. Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods. Moreover, performance gains on two down-stream fine-grained segmentation tasks demonstrate the benefit of the proposed method in training deep learning models for medical imaging tasks. The code is public available at: https://github.com/nicetomeetu21/CA-LDM.
Abstract:Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods. However, for almost all existing FCM based methods, how to automatically selecting proper membership degree hyper-parameter values remains a challenging and unsolved problem. Mixture model based methods, while circumventing the difficulty of manually adjusting membership degree hyper-parameters inherent in FCM based methods, often have a preference for specific distributions, such as the Gaussian distribution. In this paper, we propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper-parameter value and handling data with non-Gaussian clusters. Moreover, by removing the graph embedding regularization, the proposed FCM model can degenerate into the simplified generalized Gaussian mixture model. Therefore, the proposed FCM model can be also seen as the generalized Gaussian mixture model with graph embedding. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the effectiveness of the proposed model.
Abstract:In this paper, we propose a novel Visual Reference Prompt (VRP) encoder that empowers the Segment Anything Model (SAM) to utilize annotated reference images as prompts for segmentation, creating the VRP-SAM model. In essence, VRP-SAM can utilize annotated reference images to comprehend specific objects and perform segmentation of specific objects in target image. It is note that the VRP encoder can support a variety of annotation formats for reference images, including \textbf{point}, \textbf{box}, \textbf{scribble}, and \textbf{mask}. VRP-SAM achieves a breakthrough within the SAM framework by extending its versatility and applicability while preserving SAM's inherent strengths, thus enhancing user-friendliness. To enhance the generalization ability of VRP-SAM, the VRP encoder adopts a meta-learning strategy. To validate the effectiveness of VRP-SAM, we conducted extensive empirical studies on the Pascal and COCO datasets. Remarkably, VRP-SAM achieved state-of-the-art performance in visual reference segmentation with minimal learnable parameters. Furthermore, VRP-SAM demonstrates strong generalization capabilities, allowing it to perform segmentation of unseen objects and enabling cross-domain segmentation.
Abstract:DETR accomplishes end-to-end object detection through iteratively generating multiple object candidates based on image features and promoting one candidate for each ground-truth object. The traditional training procedure using one-to-one supervision in the original DETR lacks direct supervision for the object detection candidates. We aim at improving the DETR training efficiency by explicitly supervising the candidate generation procedure through mixing one-to-one supervision and one-to-many supervision. Our approach, namely MS-DETR, is simple, and places one-to-many supervision to the object queries of the primary decoder that is used for inference. In comparison to existing DETR variants with one-to-many supervision, such as Group DETR and Hybrid DETR, our approach does not need additional decoder branches or object queries. The object queries of the primary decoder in our approach directly benefit from one-to-many supervision and thus are superior in object candidate prediction. Experimental results show that our approach outperforms related DETR variants, such as DN-DETR, Hybrid DETR, and Group DETR, and the combination with related DETR variants further improves the performance.