Pengcheng Laboratory, Peking University
Abstract:There is a growing necessity for edge training to adapt to dynamically changing environment. Neuromorphic computing represents a significant pathway for high-efficiency intelligent computation in energy-constrained edges, but existing neuromorphic architectures lack the ability of directly training spiking neural networks (SNNs) based on backpropagation. We develop a multi-core neuromorphic architecture with Feedforward-Propagation, Back-Propagation, and Weight-Gradient engines in each core, supporting high efficient parallel computing at both the engine and core levels. It combines various data flows and sparse computation optimization by fully leveraging the sparsity in SNN training, obtaining a high energy efficiency of 1.05TFLOPS/W@ FP16 @ 28nm, 55 ~ 85% reduction of DRAM access compared to A100 GPU in SNN trainings, and a 20-core deep SNN training and a 5-worker federated learning on FPGAs. Our study develops the first multi-core neuromorphic architecture supporting the direct SNN training, facilitating the neuromorphic computing in edge-learnable applications.
Abstract:Recent advances in spiking neural networks (SNNs) have a predominant focus on network architectures, while relatively little attention has been paid to the underlying neuron model. The point neuron models, a cornerstone of deep SNNs, pose a bottleneck on the network-level expressivity since they depict somatic dynamics only. In contrast, the multi-compartment models in neuroscience offer remarkable expressivity by introducing dendritic morphology and dynamics, but remain underexplored in deep learning due to their unaffordable computational cost and inflexibility. To combine the advantages of both sides for a flexible, efficient yet more powerful model, we propose the dendritic spiking neuron (DendSN) incorporating multiple dendritic branches with nonlinear dynamics. Compared to the point spiking neurons, DendSN exhibits significantly higher expressivity. DendSN's flexibility enables its seamless integration into diverse deep SNN architectures. To accelerate dendritic SNNs (DendSNNs), we parallelize dendritic state updates across time steps, and develop Triton kernels for GPU-level acceleration. As a result, we can construct large-scale DendSNNs with depth comparable to their point SNN counterparts. Next, we comprehensively evaluate DendSNNs' performance on various demanding tasks. By modulating dendritic branch strengths using a context signal, catastrophic forgetting of DendSNNs is substantially mitigated. Moreover, DendSNNs demonstrate enhanced robustness against noise and adversarial attacks compared to point SNNs, and excel in few-shot learning settings. Our work firstly demonstrates the possibility of training bio-plausible dendritic SNNs with depths and scales comparable to traditional point SNNs, and reveals superior expressivity and robustness of reduced dendritic neuron models in deep learning, thereby offering a fresh perspective on advancing neural network design.
Abstract:Object detection in event streams has emerged as a cutting-edge research area, demonstrating superior performance in low-light conditions, scenarios with motion blur, and rapid movements. Current detectors leverage spiking neural networks, Transformers, or convolutional neural networks as their core architectures, each with its own set of limitations including restricted performance, high computational overhead, or limited local receptive fields. This paper introduces a novel MoE (Mixture of Experts) heat conduction-based object detection algorithm that strikingly balances accuracy and computational efficiency. Initially, we employ a stem network for event data embedding, followed by processing through our innovative MoE-HCO blocks. Each block integrates various expert modules to mimic heat conduction within event streams. Subsequently, an IoU-based query selection module is utilized for efficient token extraction, which is then channeled into a detection head for the final object detection process. Furthermore, we are pleased to introduce EvDET200K, a novel benchmark dataset for event-based object detection. Captured with a high-definition Prophesee EVK4-HD event camera, this dataset encompasses 10 distinct categories, 200,000 bounding boxes, and 10,054 samples, each spanning 2 to 5 seconds. We also provide comprehensive results from over 15 state-of-the-art detectors, offering a solid foundation for future research and comparison. The source code of this paper will be released on: https://github.com/Event-AHU/OpenEvDET
Abstract:With the increasing application scope of spiking neural networks (SNN), the complexity of SNN models has surged, leading to an exponential growth in demand for AI computility. As the new generation computing architecture of the neural networks, the efficiency and power consumption of distributed storage and parallel computing in the many-core near-memory computing system have attracted much attention. Among them, the mapping problem from logical cores to physical cores is one of the research hotspots. In order to improve the computing parallelism and system throughput of the many-core near-memory computing system, and to reduce power consumption, we propose a SNN training many-core deployment optimization method based on Off-policy Deterministic Actor-Critic. We utilize deep reinforcement learning as a nonlinear optimizer, treating the many-core topology as network graph features and using graph convolution to input the many-core structure into the policy network. We update the parameters of the policy network through near-end policy optimization to achieve deployment optimization of SNN models in the many-core near-memory computing architecture to reduce chip power consumption. To handle large-dimensional action spaces, we use continuous values matching the number of cores as the output of the policy network and then discretize them again to obtain new deployment schemes. Furthermore, to further balance inter-core computation latency and improve system throughput, we propose a model partitioning method with a balanced storage and computation strategy. Our method overcomes the problems such as uneven computation and storage loads between cores, and the formation of local communication hotspots, significantly reducing model training time, communication costs, and average flow load between cores in the many-core near-memory computing architecture.
Abstract:We introduce Open-Sora Plan, an open-source project that aims to contribute a large generation model for generating desired high-resolution videos with long durations based on various user inputs. Our project comprises multiple components for the entire video generation process, including a Wavelet-Flow Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various condition controllers. Moreover, many assistant strategies for efficient training and inference are designed, and a multi-dimensional data curation pipeline is proposed for obtaining desired high-quality data. Benefiting from efficient thoughts, our Open-Sora Plan achieves impressive video generation results in both qualitative and quantitative evaluations. We hope our careful design and practical experience can inspire the video generation research community. All our codes and model weights are publicly available at \url{https://github.com/PKU-YuanGroup/Open-Sora-Plan}.
Abstract:Combining the complementary benefits of frames and events has been widely used for object detection in challenging scenarios. However, most object detection methods use two independent Artificial Neural Network (ANN) branches, limiting cross-modality information interaction across the two visual streams and encountering challenges in extracting temporal cues from event streams with low power consumption. To address these challenges, we propose HDI-Former, a Hybrid Dynamic Interaction ANN-SNN Transformer, marking the first trial to design a directly trained hybrid ANN-SNN architecture for high-accuracy and energy-efficient object detection using frames and events. Technically, we first present a novel semantic-enhanced self-attention mechanism that strengthens the correlation between image encoding tokens within the ANN Transformer branch for better performance. Then, we design a Spiking Swin Transformer branch to model temporal cues from event streams with low power consumption. Finally, we propose a bio-inspired dynamic interaction mechanism between ANN and SNN sub-networks for cross-modality information interaction. The results demonstrate that our HDI-Former outperforms eleven state-of-the-art methods and our four baselines by a large margin. Our SNN branch also shows comparable performance to the ANN with the same architecture while consuming 10.57$\times$ less energy on the DSEC-Detection dataset. Our open-source code is available in the supplementary material.
Abstract:Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
Abstract:Spiking Neural Networks (SNNs) have attracted considerable attention due to their biologically inspired, event-driven nature, making them highly suitable for neuromorphic hardware. Time-to-First-Spike (TTFS) coding, where neurons fire only once during inference, offers the benefits of reduced spike counts, enhanced energy efficiency, and faster processing. However, SNNs employing TTFS coding often suffer from diminished classification accuracy. This paper presents an efficient training framework for TTFS that not only improves accuracy but also accelerates the training process. Unlike most previous approaches, we first identify two key issues limiting the performance of TTFS neurons: information disminishing and imbalanced membrane potential distribution. To address these challenges, we propose a novel initialization strategy. Additionally, we introduce a temporal weighting decoding method that aggregates temporal outputs through a weighted sum, supporting BPTT. Moreover, we re-evaluate the pooling layer in TTFS neurons and find that average pooling is better suited than max-pooling for this coding scheme. Our experimental results show that the proposed training framework leads to more stable training and significant performance improvements, achieving state-of-the-art (SOTA) results on both the MNIST and Fashion-MNIST datasets.
Abstract:Spiking Neural Networks (SNNs) are considered as a potential candidate for the next generation of artificial intelligence with appealing characteristics such as sparse computation and inherent temporal dynamics. By adopting architectures of Artificial Neural Networks (ANNs), SNNs achieve competitive performances on benchmark tasks like image classification. However, successful architectures of ANNs are not optimal for SNNs. In this work, we apply Neural Architecture Search (NAS) to find suitable architectures for SNNs. Previous NAS methods for SNNs focus primarily on the spatial dimension, with a notable lack of consideration for the temporal dynamics that are of critical importance for SNNs. Drawing inspiration from the heterogeneity of biological neural networks, we propose a differentiable approach to optimize SNN on both spatial and temporal dimensions. At spatial level, we have developed a spike-based differentiable hierarchical search (SpikeDHS) framework, where spike-based operation is optimized on both the cell and the layer level under computational constraints. We further propose a differentiable surrogate gradient search (DGS) method to evolve local SG functions independently during training. At temporal level, we explore an optimal configuration of diverse temporal dynamics on different types of spiking neurons by evolving their time constants, based on which we further develop hybrid networks combining SNN and ANN, balancing both accuracy and efficiency. Our methods achieve comparable classification performance of CIFAR10/100 and ImageNet with accuracies of 96.43%, 78.96%, and 70.21%, respectively. On event-based deep stereo, our methods find optimal layer variation and surpass the accuracy of specially designed ANNs with 26$\times$ lower computational cost ($6.7\mathrm{mJ}$), demonstrating the potential of SNN in processing highly sparse and dynamic signals.
Abstract:Incremental object detection (IOD) is challenged by background shift, where background categories in sequential data may include previously learned or future classes. Inspired by the vision-language foundation models such as CLIP, these models capture shared attributes from extensive image-text paired data during pre-training. We propose a novel method utilizing attributes in vision-language foundation models for incremental object detection. Our method constructs a Class-Agnostic Shared Attribute base (CASA) to capture common semantic information among incremental classes. Specifically, we utilize large language models to generate candidate textual attributes and select the most relevant ones based on current training data, recording their significance in an attribute assignment matrix. For subsequent tasks, we freeze the retained attributes and continue selecting from the remaining candidates while updating the attribute assignment matrix accordingly. Furthermore, we employ OWL-ViT as our baseline, preserving the original parameters of the pre-trained foundation model. Our method adds only 0.7% to parameter storage through parameter-efficient fine-tuning to significantly enhance the scalability and adaptability of IOD. Extensive two-phase and multi-phase experiments on the COCO dataset demonstrate the state-of-the-art performance of our proposed method.