Abstract:Reconstructing desired objects and scenes has long been a primary goal in 3D computer vision. Single-view point cloud reconstruction has become a popular technique due to its low cost and accurate results. However, single-view reconstruction methods often rely on expensive CAD models and complex geometric priors. Effectively utilizing prior knowledge about the data remains a challenge. In this paper, we introduce hyperbolic space to 3D point cloud reconstruction, enabling the model to represent and understand complex hierarchical structures in point clouds with low distortion. We build upon previous methods by proposing a hyperbolic Chamfer distance and a regularized triplet loss to enhance the relationship between partial and complete point clouds. Additionally, we design adaptive boundary conditions to improve the model's understanding and reconstruction of 3D structures. Our model outperforms most existing models, and ablation studies demonstrate the significance of our model and its components. Experimental results show that our method significantly improves feature extraction capabilities. Our model achieves outstanding performance in 3D reconstruction tasks.
Abstract:The common occurrence of occlusion-induced incompleteness in point clouds has made point cloud completion (PCC) a highly-concerned task in the field of geometric processing. Existing PCC methods typically produce complete point clouds from partial point clouds in a coarse-to-fine paradigm, with the coarse stage generating entire shapes and the fine stage improving texture details. Though diffusion models have demonstrated effectiveness in the coarse stage, the fine stage still faces challenges in producing high-fidelity results due to the ill-posed nature of PCC. The intrinsic contextual information for texture details in partial point clouds is the key to solving the challenge. In this paper, we propose a high-fidelity PCC method that digs into both short and long-range contextual information from the partial point cloud in the fine stage. Specifically, after generating the coarse point cloud via a diffusion-based coarse generator, a mixed sampling module introduces short-range contextual information from partial point clouds into the fine stage. A surface freezing modules safeguards points from noise-free partial point clouds against disruption. As for the long-range contextual information, we design a similarity modeling module to derive similarity with rigid transformation invariance between points, conducting effective matching of geometric manifold features globally. In this way, the high-quality components present in the partial point cloud serve as valuable references for refining the coarse point cloud with high fidelity. Extensive experiments have demonstrated the superiority of the proposed method over SOTA competitors. Our code is available at https://github.com/JS-CHU/ContextualCompletion.
Abstract:Due to the challenges in acquiring paired Text-3D data and the inherent irregularity of 3D data structures, combined representation learning of 3D point clouds and text remains unexplored. In this paper, we propose a novel Riemann-based Multi-scale Attention Reasoning Network (RMARN) for text-3D retrieval. Specifically, the extracted text and point cloud features are refined by their respective Adaptive Feature Refiner (AFR). Furthermore, we introduce the innovative Riemann Local Similarity (RLS) module and the Global Pooling Similarity (GPS) module. However, as 3D point cloud data and text data often possess complex geometric structures in high-dimensional space, the proposed RLS employs a novel Riemann Attention Mechanism to reflect the intrinsic geometric relationships of the data. Without explicitly defining the manifold, RMARN learns the manifold parameters to better represent the distances between text-point cloud samples. To address the challenges of lacking paired text-3D data, we have created the large-scale Text-3D Retrieval dataset T3DR-HIT, which comprises over 3,380 pairs of text and point cloud data. T3DR-HIT contains coarse-grained indoor 3D scenes and fine-grained Chinese artifact scenes, consisting of 1,380 and over 2,000 text-3D pairs, respectively. Experiments on our custom datasets demonstrate the superior performance of the proposed method. Our code and proposed datasets are available at \url{https://github.com/liwrui/RMARN}.
Abstract:Text-driven 3D scene generation has seen significant advancements recently. However, most existing methods generate single-view images using generative models and then stitch them together in 3D space. This independent generation for each view often results in spatial inconsistency and implausibility in the 3D scenes. To address this challenge, we proposed a novel text-driven 3D-consistent scene generation model: SceneDreamer360. Our proposed method leverages a text-driven panoramic image generation model as a prior for 3D scene generation and employs 3D Gaussian Splatting (3DGS) to ensure consistency across multi-view panoramic images. Specifically, SceneDreamer360 enhances the fine-tuned Panfusion generator with a three-stage panoramic enhancement, enabling the generation of high-resolution, detail-rich panoramic images. During the 3D scene construction, a novel point cloud fusion initialization method is used, producing higher quality and spatially consistent point clouds. Our extensive experiments demonstrate that compared to other methods, SceneDreamer360 with its panoramic image generation and 3DGS can produce higher quality, spatially consistent, and visually appealing 3D scenes from any text prompt. Our codes are available at \url{https://github.com/liwrui/SceneDreamer360}.
Abstract:Recent studies on AI security have highlighted the vulnerability of Vision-Language Pre-training (VLP) models to subtle yet intentionally designed perturbations in images and texts. Investigating multimodal systems' robustness via adversarial attacks is crucial in this field. Most multimodal attacks are sample-specific, generating a unique perturbation for each sample to construct adversarial samples. To the best of our knowledge, it is the first work through multimodal decision boundaries to explore the creation of a universal, sample-agnostic perturbation that applies to any image. Initially, we explore strategies to move sample points beyond the decision boundaries of linear classifiers, refining the algorithm to ensure successful attacks under the top $k$ accuracy metric. Based on this foundation, in visual-language tasks, we treat visual and textual modalities as reciprocal sample points and decision hyperplanes, guiding image embeddings to traverse text-constructed decision boundaries, and vice versa. This iterative process consistently refines a universal perturbation, ultimately identifying a singular direction within the input space which is exploitable to impair the retrieval performance of VLP models. The proposed algorithms support the creation of global perturbations or adversarial patches. Comprehensive experiments validate the effectiveness of our method, showcasing its data, task, and model transferability across various VLP models and datasets. Code: https://github.com/LibertazZ/MUAP
Abstract:With Vision-Language Pre-training (VLP) models demonstrating powerful multimodal interaction capabilities, the application scenarios of neural networks are no longer confined to unimodal domains but have expanded to more complex multimodal V+L downstream tasks. The security vulnerabilities of unimodal models have been extensively examined, whereas those of VLP models remain challenging. We note that in CV models, the understanding of images comes from annotated information, while VLP models are designed to learn image representations directly from raw text. Motivated by this discrepancy, we developed the Feature Guidance Attack (FGA), a novel method that uses text representations to direct the perturbation of clean images, resulting in the generation of adversarial images. FGA is orthogonal to many advanced attack strategies in the unimodal domain, facilitating the direct application of rich research findings from the unimodal to the multimodal scenario. By appropriately introducing text attack into FGA, we construct Feature Guidance with Text Attack (FGA-T). Through the interaction of attacking two modalities, FGA-T achieves superior attack effects against VLP models. Moreover, incorporating data augmentation and momentum mechanisms significantly improves the black-box transferability of FGA-T. Our method demonstrates stable and effective attack capabilities across various datasets, downstream tasks, and both black-box and white-box settings, offering a unified baseline for exploring the robustness of VLP models.
Abstract:The spiking neural networks (SNNs) that efficiently encode temporal sequences have shown great potential in extracting audio-visual joint feature representations. However, coupling SNNs (binary spike sequences) with transformers (float-point sequences) to jointly explore the temporal-semantic information still facing challenges. In this paper, we introduce a novel Spiking Tucker Fusion Transformer (STFT) for audio-visual zero-shot learning (ZSL). The STFT leverage the temporal and semantic information from different time steps to generate robust representations. The time-step factor (TSF) is introduced to dynamically synthesis the subsequent inference information. To guide the formation of input membrane potentials and reduce the spike noise, we propose a global-local pooling (GLP) which combines the max and average pooling operations. Furthermore, the thresholds of the spiking neurons are dynamically adjusted based on semantic and temporal cues. Integrating the temporal and semantic information extracted by SNNs and Transformers are difficult due to the increased number of parameters in a straightforward bilinear model. To address this, we introduce a temporal-semantic Tucker fusion module, which achieves multi-scale fusion of SNN and Transformer outputs while maintaining full second-order interactions. Our experimental results demonstrate the effectiveness of the proposed approach in achieving state-of-the-art performance in three benchmark datasets. The harmonic mean (HM) improvement of VGGSound, UCF101 and ActivityNet are around 15.4\%, 3.9\%, and 14.9\%, respectively.
Abstract:The Audio-Visual Question Answering (AVQA) task holds significant potential for applications. Compared to traditional unimodal approaches, the multi-modal input of AVQA makes feature extraction and fusion processes more challenging. Euclidean space is difficult to effectively represent multi-dimensional relationships of data. Especially when extracting and processing data with a tree structure or hierarchical structure, Euclidean space is not suitable as an embedding space. Additionally, the self-attention mechanism in Transformers is effective in capturing the dynamic relationships between elements in a sequence. However, the self-attention mechanism's limitations in window modeling and quadratic computational complexity reduce its effectiveness in modeling long sequences. To address these limitations, we propose SHMamba: Structured Hyperbolic State Space Model to integrate the advantages of hyperbolic geometry and state space models. Specifically, SHMamba leverages the intrinsic properties of hyperbolic space to represent hierarchical structures and complex relationships in audio-visual data. Meanwhile, the state space model captures dynamic changes over time by globally modeling the entire sequence. Furthermore, we introduce an adaptive curvature hyperbolic alignment module and a cross fusion block to enhance the understanding of hierarchical structures and the dynamic exchange of cross-modal information, respectively. Extensive experiments demonstrate that SHMamba outperforms previous methods with fewer parameters and computational costs. Our learnable parameters are reduced by 78.12\%, while the average performance improves by 2.53\%. Experiments show that our method demonstrates superiority among all current major methods and is more suitable for practical application scenarios.
Abstract:Causal discovery based on observational data is important for deciphering the causal mechanism behind complex systems. However, the effectiveness of existing causal discovery methods is limited due to inferior prior knowledge, domain inconsistencies, and the challenges of high-dimensional datasets with small sample sizes. To address this gap, we propose a novel weakly-supervised fuzzy knowledge and data co-driven causal discovery method named KEEL. KEEL adopts a fuzzy causal knowledge schema to encapsulate diverse types of fuzzy knowledge, and forms corresponding weakened constraints. This schema not only lessens the dependency on expertise but also allows various types of limited and error-prone fuzzy knowledge to guide causal discovery. It can enhance the generalization and robustness of causal discovery, especially in high-dimensional and small-sample scenarios. In addition, we integrate the extended linear causal model (ELCM) into KEEL for dealing with the multi-distribution and incomplete data. Extensive experiments with different datasets demonstrate the superiority of KEEL over several state-of-the-art methods in accuracy, robustness and computational efficiency. For causal discovery in real protein signal transduction processes, KEEL outperforms the benchmark method with limited data. In summary, KEEL is effective to tackle the causal discovery tasks with higher accuracy while alleviating the requirement for extensive domain expertise.
Abstract:This paper introduces a cooperative sensing framework designed for integrated sensing and communication cellular networks. The framework comprises one base station (BS) functioning as the sensing transmitter, while several nearby BSs act as sensing receivers. The primary objective is to facilitate cooperative target localization by enabling each receiver to share specific information with a fusion center (FC) over a limited capacity backhaul link. To achieve this goal, we propose an advanced cooperative sensing design that enhances the communication process between the receivers and the FC. Each receiver independently estimates the time delay and the reflecting coefficient associated with the reflected path from the target. Subsequently, each receiver transmits the estimated values and the received signal samples centered around the estimated time delay to the FC. To efficiently quantize the signal samples, a Karhunen-Lo\`eve Transform coding scheme is employed. Furthermore, an optimization problem is formulated to allocate backhaul resources for quantizing different samples, improving target localization. Numerical results validate the effectiveness of our proposed advanced design and demonstrate its superiority over a baseline design, where only the locally estimated values are transmitted from each receiver to the FC.