Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, China
Abstract:Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
Abstract:Multi-generative agent systems (MGASs) have become a research hotspot since the rise of large language models (LLMs). However, with the continuous influx of new related works, the existing reviews struggle to capture them comprehensively. This paper presents a comprehensive survey of these studies. We first discuss the definition of MGAS, a framework encompassing much of previous work. We provide an overview of the various applications of MGAS in (i) solving complex tasks, (ii) simulating specific scenarios, and (iii) evaluating generative agents. Building on previous studies, we also highlight several challenges and propose future directions for research in this field.
Abstract:Reconstructing desired objects and scenes has long been a primary goal in 3D computer vision. Single-view point cloud reconstruction has become a popular technique due to its low cost and accurate results. However, single-view reconstruction methods often rely on expensive CAD models and complex geometric priors. Effectively utilizing prior knowledge about the data remains a challenge. In this paper, we introduce hyperbolic space to 3D point cloud reconstruction, enabling the model to represent and understand complex hierarchical structures in point clouds with low distortion. We build upon previous methods by proposing a hyperbolic Chamfer distance and a regularized triplet loss to enhance the relationship between partial and complete point clouds. Additionally, we design adaptive boundary conditions to improve the model's understanding and reconstruction of 3D structures. Our model outperforms most existing models, and ablation studies demonstrate the significance of our model and its components. Experimental results show that our method significantly improves feature extraction capabilities. Our model achieves outstanding performance in 3D reconstruction tasks.
Abstract:Recently, large language models (LLMs) have demonstrated impressive capabilities in dealing with new tasks with the help of in-context learning (ICL). In the study of Large Vision-Language Models (LVLMs), when implementing ICL, researchers usually adopts the naive strategies like fixed demonstrations across different samples, or selecting demonstrations directly via a visual-language embedding model. These methods does not guarantee the configured demonstrations fit the need of the LVLMs. To address this issue, we now propose a novel framework, \underline{d}emonstration \underline{r}etriever for large m\underline{u}lti-modal \underline{m}odel (DRUM), which fine-tunes the visual-language embedding model to better meet the LVLM's needs. First, we discuss the retrieval strategies for a visual-language task, assuming an embedding model is given. And we propose to concate the image and text embeddings to enhance the retrieval performance. Second, we propose to re-rank the demonstrations retrieved by the embedding model via the LVLM's feedbacks, and calculate a list-wise ranking loss for training the embedding model. Third, we propose an iterative demonstration mining strategy to improve the training of the embedding model. Through extensive experiments on 3 types of visual-language tasks, 7 benchmark datasets, our DRUM framework is proven to be effective in boosting the LVLM's in-context learning performance via retrieving more proper demonstrations.
Abstract:The limited context window of contemporary large language models (LLMs) remains a huge barrier to their broader application across various domains. While continual pre-training on long-context data is a straightforward and effective solution, it incurs substantial costs in terms of data acquisition and computational resources. To alleviate this issue, we propose SharedLLM, a novel approach grounded in the design philosophy of multi-grained context compression and query-aware information retrieval. SharedLLM is composed of two short-context LLMs such as LLaMA-2, termed upper model and lower model. The lower model functions as a compressor while the upper model acts as a decoder. The upper model receives compressed, multi-grained context information from the lower model and performs context-aware modeling on the running text. Information transfer between the compressor and decoder occurs only at the lowest layers to refrain from long forward paths in the lower model and redundant cross-attention modules in the upper model. Based on this architecture, we introduce a specialized tree-style data structure to efficiently encode, store and retrieve multi-grained contextual information for text chunks. This structure, combined with a search algorithm, enables rapid encoding and retrieval of relevant information from various levels of the tree based on the input query. This entire process, wherein the sender and receiver are derived from the same LLM layer, is referred to as self-injection.
Abstract:Due to their substantial sizes, large language models (LLMs) are typically deployed within a single-backbone multi-tenant framework. In this setup, a single instance of an LLM backbone must cater to multiple users or tasks through the application of various parameter-efficient fine-tuning (PEFT) models. Despite the availability of numerous effective PEFT techniques such as LoRA, there remains a need for a PEFT approach that achieves both high efficiency during inference and competitive performance on downstream tasks. In this research, we introduce a new and straightforward PEFT methodology named \underline{P}rompt D\underline{E}pen\underline{D}ent \underline{R}epresentation M\underline{O}dification (PEDRO). The proposed method involves integrating a lightweight vector generator into each Transformer layer, which generates vectors contingent upon the input prompts. These vectors then modify the hidden representations created by the LLM through a dot product operation, thereby influencing the semantic output and generated content of the model. Extensive experimentation across a variety of tasks indicates that: (a) PEDRO surpasses recent PEFT benchmarks when using a similar number of tunable parameters. (b) Under the single-backbone multi-tenant deployment model, PEDRO exhibits superior efficiency compared to LoRA, indicating significant industrial potential.
Abstract:Graph partitioning (GP) is a classic problem that divides the node set of a graph into densely-connected blocks. Following the IEEE HPEC Graph Challenge and recent advances in pre-training techniques (e.g., large-language models), we propose PR-GPT (Pre-trained & Refined Graph ParTitioning) based on a novel pre-training & refinement paradigm. We first conduct the offline pre-training of a deep graph learning (DGL) model on small synthetic graphs with various topology properties. By using the inductive inference of DGL, one can directly generalize the pre-trained model (with frozen model parameters) to large graphs and derive feasible GP results. We also use the derived partition as a good initialization of an efficient GP method (e.g., InfoMap) to further refine the quality of partitioning. In this setting, the online generalization and refinement of PR-GPT can not only benefit from the transfer ability regarding quality but also ensure high inference efficiency without re-training. Based on a mechanism of reducing the scale of a graph to be processed by the refinement method, PR-GPT also has the potential to support streaming GP. Experiments on the Graph Challenge benchmark demonstrate that PR-GPT can ensure faster GP on large-scale graphs without significant quality degradation, compared with running a refinement method from scratch. We will make our code public at https://github.com/KuroginQin/PRGPT.
Abstract:Due to the challenges in acquiring paired Text-3D data and the inherent irregularity of 3D data structures, combined representation learning of 3D point clouds and text remains unexplored. In this paper, we propose a novel Riemann-based Multi-scale Attention Reasoning Network (RMARN) for text-3D retrieval. Specifically, the extracted text and point cloud features are refined by their respective Adaptive Feature Refiner (AFR). Furthermore, we introduce the innovative Riemann Local Similarity (RLS) module and the Global Pooling Similarity (GPS) module. However, as 3D point cloud data and text data often possess complex geometric structures in high-dimensional space, the proposed RLS employs a novel Riemann Attention Mechanism to reflect the intrinsic geometric relationships of the data. Without explicitly defining the manifold, RMARN learns the manifold parameters to better represent the distances between text-point cloud samples. To address the challenges of lacking paired text-3D data, we have created the large-scale Text-3D Retrieval dataset T3DR-HIT, which comprises over 3,380 pairs of text and point cloud data. T3DR-HIT contains coarse-grained indoor 3D scenes and fine-grained Chinese artifact scenes, consisting of 1,380 and over 2,000 text-3D pairs, respectively. Experiments on our custom datasets demonstrate the superior performance of the proposed method. Our code and proposed datasets are available at \url{https://github.com/liwrui/RMARN}.
Abstract:The dynamic nature of open-world scenarios has attracted more attention to class incremental learning (CIL). However, existing CIL methods typically presume the availability of complete ground-truth labels throughout the training process, an assumption rarely met in practical applications. Consequently, this paper explores a more challenging problem of unsupervised class incremental learning (UCIL). The essence of addressing this problem lies in effectively capturing comprehensive feature representations and discovering unknown novel classes. To achieve this, we first model the knowledge of class distribution by exploiting fine-grained prototypes. Subsequently, a granularity alignment technique is introduced to enhance the unsupervised class discovery. Additionally, we proposed a strategy to minimize overlap between novel and existing classes, thereby preserving historical knowledge and mitigating the phenomenon of catastrophic forgetting. Extensive experiments on the five datasets demonstrate that our approach significantly outperforms current state-of-the-art methods, indicating the effectiveness of the proposed method.
Abstract:The pre-training cost of large language models (LLMs) is prohibitive. One cutting-edge approach to reduce the cost is zero-shot weight transfer, also known as model growth for some cases, which magically transfers the weights trained in a small model to a large model. However, there are still some theoretical mysteries behind the weight transfer. In this paper, inspired by prior applications of mean field theory to neural network dynamics, we introduce a mean field ansatz to provide a theoretical explanation for weight transfer. Specifically, we propose the row-column (RC) ansatz under the mean field point of view, which describes the measure structure of the weights in the neural network (NN) and admits a close measure dynamic. Thus, the weights of different sizes NN admit a common distribution under proper assumptions, and weight transfer methods can be viewed as sampling methods. We empirically validate the RC ansatz by exploring simple MLP examples and LLMs such as GPT-3 and Llama-3.1. We show the mean-field point of view is adequate under suitable assumptions which can provide theoretical support for zero-shot weight transfer.