Abstract:Synthetic face recognition (SFR) aims to generate synthetic face datasets that mimic the distribution of real face data, which allows for training face recognition models in a privacy-preserving manner. Despite the remarkable potential of diffusion models in image generation, current diffusion-based SFR models struggle with generalization to real-world faces. To address this limitation, we outline three key objectives for SFR: (1) promoting diversity across identities (inter-class diversity), (2) ensuring diversity within each identity by injecting various facial attributes (intra-class diversity), and (3) maintaining identity consistency within each identity group (intra-class identity preservation). Inspired by these goals, we introduce a diffusion-fueled SFR model termed $\text{ID}^3$. $\text{ID}^3$ employs an ID-preserving loss to generate diverse yet identity-consistent facial appearances. Theoretically, we show that minimizing this loss is equivalent to maximizing the lower bound of an adjusted conditional log-likelihood over ID-preserving data. This equivalence motivates an ID-preserving sampling algorithm, which operates over an adjusted gradient vector field, enabling the generation of fake face recognition datasets that approximate the distribution of real-world faces. Extensive experiments across five challenging benchmarks validate the advantages of $\text{ID}^3$.
Abstract:Large Vision-Language Models (LVLMs) are susceptible to object hallucinations, an issue in which their generated text contains non-existent objects, greatly limiting their reliability and practicality. Current approaches often rely on the model's token likelihoods or other internal information, instruction tuning on additional datasets, or incorporating complex external tools. We first perform empirical analysis on sentence-level LVLM hallucination, finding that CLIP similarity to the image acts as a stronger and more robust indicator of hallucination compared to token likelihoods. Motivated by this, we introduce our CLIP-Guided Decoding (CGD) approach, a straightforward but effective training-free approach to reduce object hallucination at decoding time. CGD uses CLIP to guide the model's decoding process by enhancing visual grounding of generated text with the image. Experiments demonstrate that CGD effectively mitigates object hallucination across multiple LVLM families while preserving the utility of text generation.
Abstract:Despite considerable advances in automated fake news detection, due to the timely nature of news, it remains a critical open question how to effectively predict the veracity of news articles based on limited fact-checks. Existing approaches typically follow a "Train-from-Scratch" paradigm, which is fundamentally bounded by the availability of large-scale annotated data. While expressive pre-trained language models (PLMs) have been adapted in a "Pre-Train-and-Fine-Tune" manner, the inconsistency between pre-training and downstream objectives also requires costly task-specific supervision. In this paper, we propose "Prompt-and-Align" (P&A), a novel prompt-based paradigm for few-shot fake news detection that jointly leverages the pre-trained knowledge in PLMs and the social context topology. Our approach mitigates label scarcity by wrapping the news article in a task-related textual prompt, which is then processed by the PLM to directly elicit task-specific knowledge. To supplement the PLM with social context without inducing additional training overheads, motivated by empirical observation on user veracity consistency (i.e., social users tend to consume news of the same veracity type), we further construct a news proximity graph among news articles to capture the veracity-consistent signals in shared readerships, and align the prompting predictions along the graph edges in a confidence-informed manner. Extensive experiments on three real-world benchmarks demonstrate that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
Abstract:Confidence calibration is central to providing accurate and interpretable uncertainty estimates, especially under safety-critical scenarios. However, we find that existing calibration algorithms often overlook the issue of proximity bias, a phenomenon where models tend to be more overconfident in low proximity data (i.e., lying in the sparse region of the data distribution) compared to high proximity samples, and thus suffer from inconsistent miscalibration across different proximity samples. We examine the problem over pretrained ImageNet models and observe that: 1) Proximity bias exists across a wide variety of model architectures and sizes; 2) Transformer-based models are more susceptible to proximity bias than CNN-based models; 3) Proximity bias persists even after performing popular calibration algorithms like temperature scaling; 4) Models tend to overfit more heavily on low proximity samples than on high proximity samples. Motivated by the empirical findings, we propose ProCal, a plug-and-play algorithm with a theoretical guarantee to adjust sample confidence based on proximity. To further quantify the effectiveness of calibration algorithms in mitigating proximity bias, we introduce proximity-informed expected calibration error (PIECE) with theoretical analysis. We show that ProCal is effective in addressing proximity bias and improving calibration on balanced, long-tail, and distribution-shift settings under four metrics over various model architectures.
Abstract:Reliable application of machine learning is of primary importance to the practical deployment of deep learning methods. A fundamental challenge is that models are often unreliable due to overconfidence. In this paper, we estimate a model's reliability by measuring \emph{the agreement between its latent space, and the latent space of a foundation model}. However, it is challenging to measure the agreement between two different latent spaces due to their incoherence, \eg, arbitrary rotations and different dimensionality. To overcome this incoherence issue, we design a \emph{neighborhood agreement measure} between latent spaces and find that this agreement is surprisingly well-correlated with the reliability of a model's predictions. Further, we show that fusing neighborhood agreement into a model's predictive confidence in a post-hoc way significantly improves its reliability. Theoretical analysis and extensive experiments on failure detection across various datasets verify the effectiveness of our method on both in-distribution and out-of-distribution settings.
Abstract:Trustworthy machine learning is of primary importance to the practical deployment of deep learning models. While state-of-the-art models achieve astonishingly good performance in terms of accuracy, recent literature reveals that their predictive confidence scores unfortunately cannot be trusted: e.g., they are often overconfident when wrong predictions are made, or so even for obvious outliers. In this paper, we introduce a new approach of self-supervised probing, which enables us to check and mitigate the overconfidence issue for a trained model, thereby improving its trustworthiness. We provide a simple yet effective framework, which can be flexibly applied to existing trustworthiness-related methods in a plug-and-play manner. Extensive experiments on three trustworthiness-related tasks (misclassification detection, calibration and out-of-distribution detection) across various benchmarks verify the effectiveness of our proposed probing framework.
Abstract:How do we know when the predictions made by a classifier can be trusted? This is a fundamental problem that also has immense practical applicability, especially in safety-critical areas such as medicine and autonomous driving. The de facto approach of using the classifier's softmax outputs as a proxy for trustworthiness suffers from the over-confidence issue; while the most recent works incur problems such as additional retraining cost and accuracy versus trustworthiness trade-off. In this work, we argue that the trustworthiness of a classifier's prediction for a sample is highly associated with two factors: the sample's neighborhood information and the classifier's output. To combine the best of both worlds, we design a model-agnostic post-hoc approach NeighborAgg to leverage the two essential information via an adaptive neighborhood aggregation. Theoretically, we show that NeighborAgg is a generalized version of a one-hop graph convolutional network, inheriting the powerful modeling ability to capture the varying similarity between samples within each class. We also extend our approach to the closely related task of mislabel detection and provide a theoretical coverage guarantee to bound the false negative. Empirically, extensive experiments on image and tabular benchmarks verify our theory and suggest that NeighborAgg outperforms other methods, achieving state-of-the-art trustworthiness performance.
Abstract:Given high-dimensional time series data (e.g., sensor data), how can we detect anomalous events, such as system faults and attacks? More challengingly, how can we do this in a way that captures complex inter-sensor relationships, and detects and explains anomalies which deviate from these relationships? Recently, deep learning approaches have enabled improvements in anomaly detection in high-dimensional datasets; however, existing methods do not explicitly learn the structure of existing relationships between variables, or use them to predict the expected behavior of time series. Our approach combines a structure learning approach with graph neural networks, additionally using attention weights to provide explainability for the detected anomalies. Experiments on two real-world sensor datasets with ground truth anomalies show that our method detects anomalies more accurately than baseline approaches, accurately captures correlations between sensors, and allows users to deduce the root cause of a detected anomaly.