Abstract:To broaden the dissemination of scientific knowledge to diverse audiences, scientific document summarization must simultaneously control multiple attributes such as length and empirical focus. However, existing research typically focuses on controlling single attributes, leaving the compositional control of multiple attributes underexplored. To address this gap, we introduce CCSBench, a benchmark for compositional controllable summarization in the scientific domain. Our benchmark enables fine-grained control over both explicit attributes (e.g., length), which are objective and straightforward, and implicit attributes (e.g., empirical focus), which are more subjective and conceptual. We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings. Our findings reveal significant limitations in large language models' ability to balance trade-offs between control attributes, especially implicit ones that require deeper understanding and abstract reasoning.
Abstract:Synthetic face recognition (SFR) aims to generate synthetic face datasets that mimic the distribution of real face data, which allows for training face recognition models in a privacy-preserving manner. Despite the remarkable potential of diffusion models in image generation, current diffusion-based SFR models struggle with generalization to real-world faces. To address this limitation, we outline three key objectives for SFR: (1) promoting diversity across identities (inter-class diversity), (2) ensuring diversity within each identity by injecting various facial attributes (intra-class diversity), and (3) maintaining identity consistency within each identity group (intra-class identity preservation). Inspired by these goals, we introduce a diffusion-fueled SFR model termed $\text{ID}^3$. $\text{ID}^3$ employs an ID-preserving loss to generate diverse yet identity-consistent facial appearances. Theoretically, we show that minimizing this loss is equivalent to maximizing the lower bound of an adjusted conditional log-likelihood over ID-preserving data. This equivalence motivates an ID-preserving sampling algorithm, which operates over an adjusted gradient vector field, enabling the generation of fake face recognition datasets that approximate the distribution of real-world faces. Extensive experiments across five challenging benchmarks validate the advantages of $\text{ID}^3$.
Abstract:An efficient and accurate traffic monitoring system often takes advantages of multi-sensor detection to ensure the safety of urban traffic, promoting the accuracy and robustness of target detection and tracking. A method for target detection using Radar-Vision Fusion Path Aggregation Fully Convolutional One-Stage Network (RV-PAFCOS) is proposed in this paper, which is extended from Fully Convolutional One-Stage Network (FCOS) by introducing the modules of radar image processing branches, radar-vision fusion and path aggregation. The radar image processing branch mainly focuses on the image modeling based on the spatiotemporal calibration of millimeter-wave (mmw) radar and cameras, taking the conversion of radar point clouds to radar images. The fusion module extracts features of radar and optical images based on the principle of spatial attention stitching criterion. The path aggregation module enhances the reuse of feature layers, combining the positional information of shallow feature maps with deep semantic information, to obtain better detection performance for both large and small targets. Through the experimental analysis, the method proposed in this paper can effectively fuse the mmw radar and vision perceptions, showing good performance in traffic target detection.
Abstract:It is commonly perceived that online fake news and reliable news exhibit stark differences in writing styles, such as the use of sensationalist versus objective language. However, we emphasize that style-related features can also be exploited for style-based attacks. Notably, the rise of powerful Large Language Models (LLMs) has enabled malicious users to mimic the style of trustworthy news outlets at minimal cost. Our analysis reveals that LLM-camouflaged fake news content leads to substantial performance degradation of state-of-the-art text-based detectors (up to 38% decrease in F1 Score), posing a significant challenge for automated detection in online ecosystems. To address this, we introduce SheepDog, a style-agnostic fake news detector robust to news writing styles. SheepDog achieves this adaptability through LLM-empowered news reframing, which customizes each article to match different writing styles using style-oriented reframing prompts. By employing style-agnostic training, SheepDog enhances its resilience to stylistic variations by maximizing prediction consistency across these diverse reframings. Furthermore, SheepDog extracts content-focused veracity attributions from LLMs, where the news content is evaluated against a set of fact-checking rationales. These attributions provide supplementary information and potential interpretability that assist veracity prediction. On three benchmark datasets, empirical results show that SheepDog consistently yields significant improvements over competitive baselines and enhances robustness against LLM-empowered style attacks.
Abstract:Despite considerable advances in automated fake news detection, due to the timely nature of news, it remains a critical open question how to effectively predict the veracity of news articles based on limited fact-checks. Existing approaches typically follow a "Train-from-Scratch" paradigm, which is fundamentally bounded by the availability of large-scale annotated data. While expressive pre-trained language models (PLMs) have been adapted in a "Pre-Train-and-Fine-Tune" manner, the inconsistency between pre-training and downstream objectives also requires costly task-specific supervision. In this paper, we propose "Prompt-and-Align" (P&A), a novel prompt-based paradigm for few-shot fake news detection that jointly leverages the pre-trained knowledge in PLMs and the social context topology. Our approach mitigates label scarcity by wrapping the news article in a task-related textual prompt, which is then processed by the PLM to directly elicit task-specific knowledge. To supplement the PLM with social context without inducing additional training overheads, motivated by empirical observation on user veracity consistency (i.e., social users tend to consume news of the same veracity type), we further construct a news proximity graph among news articles to capture the veracity-consistent signals in shared readerships, and align the prompting predictions along the graph edges in a confidence-informed manner. Extensive experiments on three real-world benchmarks demonstrate that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
Abstract:Confidence calibration is central to providing accurate and interpretable uncertainty estimates, especially under safety-critical scenarios. However, we find that existing calibration algorithms often overlook the issue of proximity bias, a phenomenon where models tend to be more overconfident in low proximity data (i.e., lying in the sparse region of the data distribution) compared to high proximity samples, and thus suffer from inconsistent miscalibration across different proximity samples. We examine the problem over pretrained ImageNet models and observe that: 1) Proximity bias exists across a wide variety of model architectures and sizes; 2) Transformer-based models are more susceptible to proximity bias than CNN-based models; 3) Proximity bias persists even after performing popular calibration algorithms like temperature scaling; 4) Models tend to overfit more heavily on low proximity samples than on high proximity samples. Motivated by the empirical findings, we propose ProCal, a plug-and-play algorithm with a theoretical guarantee to adjust sample confidence based on proximity. To further quantify the effectiveness of calibration algorithms in mitigating proximity bias, we introduce proximity-informed expected calibration error (PIECE) with theoretical analysis. We show that ProCal is effective in addressing proximity bias and improving calibration on balanced, long-tail, and distribution-shift settings under four metrics over various model architectures.
Abstract:As social media becomes a hotbed for the spread of misinformation, the crucial task of rumor detection has witnessed promising advances fostered by open-source benchmark datasets. Despite being widely used, we find that these datasets suffer from spurious correlations, which are ignored by existing studies and lead to severe overestimation of existing rumor detection performance. The spurious correlations stem from three causes: (1) event-based data collection and labeling schemes assign the same veracity label to multiple highly similar posts from the same underlying event; (2) merging multiple data sources spuriously relates source identities to veracity labels; and (3) labeling bias. In this paper, we closely investigate three of the most popular rumor detection benchmark datasets (i.e., Twitter15, Twitter16 and PHEME), and propose event-separated rumor detection as a solution to eliminate spurious cues. Under the event-separated setting, we observe that the accuracy of existing state-of-the-art models drops significantly by over 40%, becoming only comparable to a simple neural classifier. To better address this task, we propose Publisher Style Aggregation (PSA), a generalizable approach that aggregates publisher posting records to learn writing style and veracity stance. Extensive experiments demonstrate that our method outperforms existing baselines in terms of effectiveness, efficiency and generalizability.