Abstract:Current visual question answering (VQA) tasks often require constructing multimodal datasets and fine-tuning visual language models, which demands significant time and resources. This has greatly hindered the application of VQA to downstream tasks, such as ship information analysis based on Synthetic Aperture Radar (SAR) imagery. To address this challenge, this letter proposes a novel VQA approach that integrates object detection networks with visual language models, specifically designed for analyzing ships in SAR images. This integration aims to enhance the capabilities of VQA systems, focusing on aspects such as ship location, density, and size analysis, as well as risk behavior detection. Initially, we conducted baseline experiments using YOLO networks on two representative SAR ship detection datasets, SSDD and HRSID, to assess each model's performance in terms of detection accuracy. Based on these results, we selected the optimal model, YOLOv8n, as the most suitable detection network for this task. Subsequently, leveraging the vision-language model Qwen2-VL, we designed and implemented a VQA task specifically for SAR scenes. This task employs the ship location and size information output by the detection network to generate multi-turn dialogues and scene descriptions for SAR imagery. Experimental results indicate that this method not only enables fundamental SAR scene question-answering without the need for additional datasets or fine-tuning but also dynamically adapts to complex, multi-turn dialogue requirements, demonstrating robust semantic understanding and adaptability.
Abstract:Despite significant advancements in salient object detection(SOD) in optical remote sensing images(ORSI), challenges persist due to the intricate edge structures of ORSIs and the complexity of their contextual relationships. Current deep learning approaches encounter difficulties in accurately identifying boundary features and lack efficiency in collaboratively modeling the foreground and background by leveraging contextual features. To address these challenges, we propose a stronger multifaceted collaborative salient object detector in ORSIs, termed LBA-MCNet, which incorporates aspects of localization, balance, and affinity. The network focuses on accurately locating targets, balancing detailed features, and modeling image-level global context information. Specifically, we design the Edge Feature Adaptive Balancing and Adjusting(EFABA) module for precise edge localization, using edge features to guide attention to boundaries and preserve spatial details. Moreover, we design the Global Distributed Affinity Learning(GDAL) module to model global context. It captures global context by generating an affinity map from the encoders final layer, ensuring effective modeling of global patterns. Additionally, deep supervision during deconvolution further enhances feature representation. Finally, we compared with 28 state of the art approaches on three publicly available datasets. The results clearly demonstrate the superiority of our method.
Abstract:Recent developments in synthetic aperture radar (SAR) ship detection have seen deep learning techniques achieve remarkable progress in accuracy and speed. However, the detection of small targets against complex backgrounds remains a significant challenge. To tackle these difficulties, this letter presents RSNet, a lightweight framework aimed at enhancing ship detection capabilities in SAR imagery. RSNet features the Waveletpool-ContextGuided (WCG) backbone for enhanced accuracy with fewer parameters, and the Waveletpool-StarFusion (WSF) head for efficient parameter reduction. Additionally, a Lightweight-Shared (LS) module minimizes the detection head's parameter load. Experiments on the SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID) demonstrate that RSNet achieves a strong balance between lightweight design and detection performance, surpassing many state-of-the-art detectors, reaching 72.5\% and 67.6\% in \textbf{\(\mathbf{mAP_{.50:95}}\) }respectively with 1.49M parameters. Our code will be released soon.
Abstract:Laryngo-pharyngeal cancer (LPC) is a highly lethal malignancy in the head and neck region. Recent advancements in tumor detection, particularly through dual-branch network architectures, have significantly improved diagnostic accuracy by integrating global and local feature extraction. However, challenges remain in accurately localizing lesions and fully capitalizing on the complementary nature of features within these branches. To address these issues, we propose SAM-Swin, an innovative SAM-driven Dual-Swin Transformer for laryngo-pharyngeal tumor detection. This model leverages the robust segmentation capabilities of the Segment Anything Model 2 (SAM2) to achieve precise lesion segmentation. Meanwhile, we present a multi-scale lesion-aware enhancement module (MS-LAEM) designed to adaptively enhance the learning of nuanced complementary features across various scales, improving the quality of feature extraction and representation. Furthermore, we implement a multi-scale class-aware guidance (CAG) loss that delivers multi-scale targeted supervision, thereby enhancing the model's capacity to extract class-specific features. To validate our approach, we compiled three LPC datasets from the First Affiliated Hospital (FAHSYSU), the Sixth Affiliated Hospital (SAHSYSU) of Sun Yat-sen University, and Nanfang Hospital of Southern Medical University (NHSMU). The FAHSYSU dataset is utilized for internal training, while the SAHSYSU and NHSMU datasets serve for external evaluation. Extensive experiments demonstrate that SAM-Swin outperforms state-of-the-art methods, showcasing its potential for advancing LPC detection and improving patient outcomes. The source code of SAM-Swin is available at the URL of \href{https://github.com/VVJia/SAM-Swin}{https://github.com/VVJia/SAM-Swin}.
Abstract:Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs) through the complex inverse task of reconstructing these images from coded two-dimensional measurements. Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details and often rely on constrained datasets like KAIST and CAVE, resulting in models with poor generalizability. In response to these challenges, this paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging (SCI). Our approach leverages a pretrained SCI reconstruction network to generate initial predictions from two-dimensional measurements. Subsequently, a one-step diffusion model produces high-frequency residuals to enhance these initial predictions. Additionally, acknowledging the high costs associated with collecting MSIs, we develop a self-supervised paradigm based on the Equivariant Imaging (EI) framework. Experimental results validate the superiority of our model compared to previous methods, showcasing its simplicity and adaptability to various end-to-end or unfolding techniques.
Abstract:Laryngo-pharyngeal cancer (LPC) is a highly fatal malignant disease affecting the head and neck region. Previous studies on endoscopic tumor detection, particularly those leveraging dual-branch network architectures, have shown significant advancements in tumor detection. These studies highlight the potential of dual-branch networks in improving diagnostic accuracy by effectively integrating global and local (lesion) feature extraction. However, they are still limited in their capabilities to accurately locate the lesion region and capture the discriminative feature information between the global and local branches. To address these issues, we propose a novel SAM-guided fusion network (SAM-FNet), a dual-branch network for laryngo-pharyngeal tumor detection. By leveraging the powerful object segmentation capabilities of the Segment Anything Model (SAM), we introduce the SAM into the SAM-FNet to accurately segment the lesion region. Furthermore, we propose a GAN-like feature optimization (GFO) module to capture the discriminative features between the global and local branches, enhancing the fusion feature complementarity. Additionally, we collect two LPC datasets from the First Affiliated Hospital (FAHSYSU) and the Sixth Affiliated Hospital (SAHSYSU) of Sun Yat-sen University. The FAHSYSU dataset is used as the internal dataset for training the model, while the SAHSYSU dataset is used as the external dataset for evaluating the model's performance. Extensive experiments on both datasets of FAHSYSU and SAHSYSU demonstrate that the SAM-FNet can achieve competitive results, outperforming the state-of-the-art counterparts. The source code of SAM-FNet is available at the URL of https://github.com/VVJia/SAM-FNet.
Abstract:Accurate diagnosis of depression is crucial for timely implementation of optimal treatments, preventing complications and reducing the risk of suicide. Traditional methods rely on self-report questionnaires and clinical assessment, lacking objective biomarkers. Combining fMRI with artificial intelligence can enhance depression diagnosis by integrating neuroimaging indicators. However, the specificity of fMRI acquisition for depression often results in unbalanced and small datasets, challenging the sensitivity and accuracy of classification models. In this study, we propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating CNN and RNN to capture both temporal and spatial features of brain activity. STANet comprises the following steps:(1) Aggregate spatio-temporal information via ICA. (2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using the SMOTE to generate new samples for minority classes. (4) Employ the AFGRU classifier, which combines Fourier transformation with GRU, to capture long-term dependencies, with an adaptive weight assignment mechanism to enhance model generalization. The experimental results demonstrate that STANet achieves superior depression diagnostic performance with 82.38% accuracy and a 90.72% AUC. The STFA module enhances classification by capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and stacked GRU, attains higher accuracy and AUC. SMOTE outperforms other oversampling methods. Additionally, spatio-temporal aggregated features achieve better performance compared to using only temporal or spatial features. STANet outperforms traditional or deep learning classifiers, and functional connectivity-based classifiers, as demonstrated by ten-fold cross-validation.
Abstract:Background: Although it has been noticed that depressed patients show differences in processing emotions, the precise neural modulation mechanisms of positive and negative emotions remain elusive. FMRI is a cutting-edge medical imaging technology renowned for its high spatial resolution and dynamic temporal information, making it particularly suitable for the neural dynamics of depression research. Methods: To address this gap, our study firstly leveraged fMRI to delineate activated regions associated with positive and negative emotions in healthy individuals, resulting in the creation of positive emotion atlas (PEA) and negative emotion atlas (NEA). Subsequently, we examined neuroimaging changes in depression patients using these atlases and evaluated their diagnostic performance based on machine learning. Results: Our findings demonstrate that the classification accuracy of depressed patients based on PEA and NEA exceeded 0.70, a notable improvement compared to the whole-brain atlases. Furthermore, ALFF analysis unveiled significant differences between depressed patients and healthy controls in eight functional clusters during the NEA, focusing on the left cuneus, cingulate gyrus, and superior parietal lobule. In contrast, the PEA revealed more pronounced differences across fifteen clusters, involving the right fusiform gyrus, parahippocampal gyrus, and inferior parietal lobule. Limitations: Due to the limited sample size and subtypes of depressed patients, the efficacy may need further validation in future. Conclusions: These findings emphasize the complex interplay between emotion modulation and depression, showcasing significant alterations in both PEA and NEA among depression patients. This research enhances our understanding of emotion modulation in depression, with implications for diagnosis and treatment evaluation.
Abstract:Single-channel electroencephalogram (EEG) is a cost-effective, comfortable, and non-invasive method for monitoring brain activity, widely adopted by researchers, consumers, and clinicians. The increasing number and proportion of articles on single-channel EEG underscore its growing potential. This paper provides a comprehensive review of single-channel EEG, focusing on development trends, devices, datasets, signal processing methods, recent applications, and future directions. Definitions of bipolar and unipolar configurations in single-channel EEG are clarified to guide future advancements. Applications mainly span sleep staging, emotion recognition, educational research, and clinical diagnosis. Ongoing advancements of single-channel EEG in AI-based EEG generation techniques suggest potential parity or superiority over multichannel EEG performance.
Abstract:With the rapid development of artificial intelligence (AI), large language models (LLMs) such as GPT-4 have garnered significant attention in the scientific community, demonstrating great potential in advancing scientific discovery. This progress raises a critical question: are these LLMs well-aligned with real-world physicochemical principles? Current evaluation strategies largely emphasize fact-based knowledge, such as material property prediction or name recognition, but they often lack an understanding of fundamental physicochemical mechanisms that require logical reasoning. To bridge this gap, our study developed a benchmark consisting of 775 multiple-choice questions focusing on the mechanisms of gold nanoparticle synthesis. By reflecting on existing evaluation metrics, we question whether a direct true-or-false assessment merely suggests conjecture. Hence, we propose a novel evaluation metric, the confidence-based score (c-score), which probes the output logits to derive the precise probability for the correct answer. Based on extensive experiments, our results show that in the context of gold nanoparticle synthesis, LLMs understand the underlying physicochemical mechanisms rather than relying on conjecture. This study underscores the potential of LLMs to grasp intrinsic scientific mechanisms and sets the stage for developing more reliable and effective AI tools across various scientific domains.