Abstract:Federated Semi-Supervised Learning (FSSL) aims to leverage unlabeled data across clients with limited labeled data to train a global model with strong generalization ability. Most FSSL methods rely on consistency regularization with pseudo-labels, converting predictions from local or global models into hard pseudo-labels as supervisory signals. However, we discover that the quality of pseudo-label is largely deteriorated by data heterogeneity, an intrinsic facet of federated learning. In this paper, we study the problem of FSSL in-depth and show that (1) heterogeneity exacerbates pseudo-label mismatches, further degrading model performance and convergence, and (2) local and global models' predictive tendencies diverge as heterogeneity increases. Motivated by these findings, we propose a simple and effective method called Semi-supervised Aggregation for Globally-Enhanced Ensemble (SAGE), that can flexibly correct pseudo-labels based on confidence discrepancies. This strategy effectively mitigates performance degradation caused by incorrect pseudo-labels and enhances consensus between local and global models. Experimental results demonstrate that SAGE outperforms existing FSSL methods in both performance and convergence. Our code is available at https://github.com/Jay-Codeman/SAGE
Abstract:In real-world datasets, the challenges of long-tailed distributions and noisy labels often coexist, posing obstacles to the model training and performance. Existing studies on long-tailed noisy label learning (LTNLL) typically assume that the generation of noisy labels is independent of the long-tailed distribution, which may not be true from a practical perspective. In real-world situaiton, we observe that the tail class samples are more likely to be mislabeled as head, exacerbating the original degree of imbalance. We call this phenomenon as ``tail-to-head (T2H)'' noise. T2H noise severely degrades model performance by polluting the head classes and forcing the model to learn the tail samples as head. To address this challenge, we investigate the dynamic misleading process of the nosiy labels and propose a novel method called Disentangling and Unlearning for Long-tailed and Label-noisy data (DULL). It first employs the Inner-Feature Disentangling (IFD) to disentangle feature internally. Based on this, the Inner-Feature Partial Unlearning (IFPU) is then applied to weaken and unlearn incorrect feature regions correlated to wrong classes. This method prevents the model from being misled by noisy labels, enhancing the model's robustness against noise. To provide a controlled experimental environment, we further propose a new noise addition algorithm to simulate T2H noise. Extensive experiments on both simulated and real-world datasets demonstrate the effectiveness of our proposed method.
Abstract:Effectively handling the co-occurrence of non-IID data and long-tailed distributions remains a critical challenge in federated learning. While fine-tuning vision-language models (VLMs) like CLIP has shown to be promising in addressing non-IID data challenges, this approach leads to severe degradation of tail classes in federated long-tailed scenarios. Under the composite effects of strong non-IID data distribution and long-tailed class imbalances, VLM fine-tuning may even fail to yield any improvement. To address this issue, we propose Class-Aware Prompt Learning for Federated Long-tailed Learning (CAPT), a novel framework that leverages a pre-trained VLM to effectively handle both data heterogeneity and long-tailed distributions. CAPT introduces a dual-prompt mechanism that synergizes general and class-aware prompts, enabling the framework to capture global trends while preserving class-specific knowledge. To better aggregate and share knowledge across clients, we introduce a heterogeneity-aware client clustering strategy that groups clients based on their data distributions, enabling efficient collaboration and knowledge sharing. Extensive experiments on various long-tailed datasets with different levels of data heterogeneity demonstrate that CAPT significantly improves tail class performance without compromising overall accuracy, outperforming state-of-the-art methods in federated long-tailed learning scenarios.
Abstract:Visual prompt tuning (VPT) provides an efficient and effective solution for adapting pre-trained models to various downstream tasks by incorporating learnable prompts. However, most prior art indiscriminately applies a fixed prompt distribution across different tasks, neglecting the importance of each block differing depending on the task. In this paper, we investigate adaptive distribution optimization (ADO) by addressing two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through in-depth analysis, we provide an affirmative answer that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution building upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy for ADO derived from this formulation, comprising two optimization steps: identifying and pruning idle prompts, followed by determining the optimal blocks for their relocation. By iteratively performing prompt relocation and VPT, our proposal adaptively learns the optimal prompt distribution, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms state-of-the-art VPT methods, e.g., PRO-VPT surpasses VPT by 1.6% average accuracy, leading prompt-based methods to state-of-the-art performance on the VTAB-1k benchmark. The code is available at https://github.com/ckshang/PRO-VPT.
Abstract:Data heterogeneity, stemming from local non-IID data and global long-tailed distributions, is a major challenge in federated learning (FL), leading to significant performance gaps compared to centralized learning. Previous research found that poor representations and biased classifiers are the main problems and proposed neural-collapse-inspired synthetic simplex ETF to help representations be closer to neural collapse optima. However, we find that the neural-collapse-inspired methods are not strong enough to reach neural collapse and still have huge gaps to centralized training. In this paper, we rethink this issue from a self-bootstrap perspective and propose FedYoYo (You Are Your Own Best Teacher), introducing Augmented Self-bootstrap Distillation (ASD) to improve representation learning by distilling knowledge between weakly and strongly augmented local samples, without needing extra datasets or models. We further introduce Distribution-aware Logit Adjustment (DLA) to balance the self-bootstrap process and correct biased feature representations. FedYoYo nearly eliminates the performance gap, achieving centralized-level performance even under mixed heterogeneity. It enhances local representation learning, reducing model drift and improving convergence, with feature prototypes closer to neural collapse optimality. Extensive experiments show FedYoYo achieves state-of-the-art results, even surpassing centralized logit adjustment methods by 5.4\% under global long-tailed settings.
Abstract:In this report, we present the third technical report on the development of slow-thinking models as part of the STILL project. As the technical pathway becomes clearer, scaling RL training has become a central technique for implementing such reasoning models. We systematically experiment with and document the effects of various factors influencing RL training, conducting experiments on both base models and fine-tuned models. Specifically, we demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models, enhancing both response length and test accuracy. Furthermore, we show that even when a model like DeepSeek-R1-Distill-Qwen-1.5B has already achieved a high performance level, it can be further refined through RL training, reaching an accuracy of 39.33% on AIME 2024. Beyond RL training, we also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models. This approach achieves a remarkable accuracy of 86.67% with greedy search on AIME 2024, underscoring its effectiveness in enhancing model capabilities. We release our resources at the STILL project website: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
Abstract:This paper proposes a graph neural network (GNN) enabled power allocation scheme for non-orthogonal multiple access (NOMA) networks. In particular, a downlink scenario with one base station serving multiple users over several subchannels is considered, where the number of subchannels is less than the number of users, and thus, some users have to share a subchannel via NOMA. Our goal is to maximize the system energy efficiency subject to the rate requirement of each user and the overall budget. We propose a deep learning based approach termed NOMA net (NOMANet) to address the considered problem. Particularly, NOMANet is GNN-based, which maps channel state information to the desired power allocation scheme for all subchannels. The multi-head attention and the residual/dense connection are adopted to enhance the feature extraction. The output of NOMANet is guaranteed to be feasible via the customized activation function and the penalty method. Numerical results show that NOMANet trained unsupervised achieves performance close to that of the successive convex approximation method but with a faster inference speed by about $700$ times. Besides, NOMANet is featured by its scalability to both users and subchannels.
Abstract:The pinching-antenna system is a novel flexible-antenna technology, which has the capabilities not only to combat large-scale path loss, but also to reconfigure the antenna array in a flexible manner. The key idea of pinching antennas is to apply small dielectric particles on a waveguide of arbitrary length, so that they can be positioned close to users to avoid significant large-scale path loss. This paper investigates the graph neural network (GNN) enabled transmit design for the joint optimization of antenna placement and power allocation in pinching-antenna systems. We formulate the downlink communication system equipped with pinching antennas as a bipartite graph, and propose a graph attention network (GAT) based model, termed bipartite GAT (BGAT), to solve an energy efficiency (EE) maximization problem. With the tailored readout processes, the BGAT guarantees a feasible solution, which also facilitates the unsupervised training. Numerical results demonstrate the effectiveness of pinching antennas in enhancing the system EE as well as the proposed BGAT in terms of optimality, scalability and computational efficiency.
Abstract:This paper investigates the graph neural network (GNN)-enabled beamforming design for interference channels. We propose a model termed interference channel GNN (ICGNN) to solve a quality-of-service constrained energy efficiency maximization problem. The ICGNN is two-stage, where the direction and power parts of beamforming vectors are learned separately but trained jointly via unsupervised learning. By formulating the dimensionality of features independent of the transceiver pairs, the ICGNN is scalable with the number of transceiver pairs. Besides, to improve the performance of the ICGNN, the hybrid maximum ratio transmission and zero-forcing scheme reduces the output ports, the feature enhancement module unifies the two types of links into one type, the subgraph representation enhances the message passing efficiency, and the multi-head attention and residual connection facilitate the feature extracting. Furthermore, we present the over-the-air distributed implementation of the ICGNN. Ablation studies validate the effectiveness of key components in the ICGNN. Numerical results also demonstrate the capability of ICGNN in achieving near-optimal performance with an average inference time less than 0.1 ms. The scalability of ICGNN for unseen problem sizes is evaluated and enhanced by transfer learning with limited fine-tuning cost. The results of the centralized and distributed implementations of ICGNN are illustrated.
Abstract:This paper investigates the deep learning based approaches for simultaneous wireless information and power transfer (SWIPT). The quality-of-service (QoS) constrained sum-rate maximization problems are, respectively, formulated for power-splitting (PS) receivers and time-switching (TS) receivers and solved by a unified graph neural network (GNN) based model termed SWIPT net (SWIPTNet). To improve the performance of SWIPTNet, we first propose a single-type output method to reduce the learning complexity and facilitate the satisfaction of QoS constraints, and then, utilize the Laplace transform to enhance input features with the structural information. Besides, we adopt the multi-head attention and layer connection to enhance feature extracting. Furthermore, we present the implementation of transfer learning to the SWIPTNet between PS and TS receivers. Ablation studies show the effectiveness of key components in the SWIPTNet. Numerical results also demonstrate the capability of SWIPTNet in achieving near-optimal performance with millisecond-level inference speed which is much faster than the traditional optimization algorithms. We also show the effectiveness of transfer learning via fast convergence and expressive capability improvement.