Abstract:Federated Clustering (FC) is crucial to mining knowledge from unlabeled non-Independent Identically Distributed (non-IID) data provided by multiple clients while preserving their privacy. Most existing attempts learn cluster distributions at local clients, and then securely pass the desensitized information to the server for aggregation. However, some tricky but common FC problems are still relatively unexplored, including the heterogeneity in terms of clients' communication capacity and the unknown number of proper clusters $k^*$. To further bridge the gap between FC and real application scenarios, this paper first shows that the clients' communication asynchrony and unknown $k^*$ are complex coupling problems, and then proposes an Asynchronous Federated Cluster Learning (AFCL) method accordingly. It spreads the excessive number of seed points to the clients as a learning medium and coordinates them across the clients to form a consensus. To alleviate the distribution imbalance cumulated due to the unforeseen asynchronous uploading from the heterogeneous clients, we also design a balancing mechanism for seeds updating. As a result, the seeds gradually adapt to each other to reveal a proper number of clusters. Extensive experiments demonstrate the efficacy of AFCL.
Abstract:Ensuring trustworthiness is fundamental to the development of artificial intelligence (AI) that is considered societally responsible, particularly in cancer diagnostics, where a misdiagnosis can have dire consequences. Current digital pathology AI models lack systematic solutions to address trustworthiness concerns arising from model limitations and data discrepancies between model deployment and development environments. To address this issue, we developed TRUECAM, a framework designed to ensure both data and model trustworthiness in non-small cell lung cancer subtyping with whole-slide images. TRUECAM integrates 1) a spectral-normalized neural Gaussian process for identifying out-of-scope inputs and 2) an ambiguity-guided elimination of tiles to filter out highly ambiguous regions, addressing data trustworthiness, as well as 3) conformal prediction to ensure controlled error rates. We systematically evaluated the framework across multiple large-scale cancer datasets, leveraging both task-specific and foundation models, illustrate that an AI model wrapped with TRUECAM significantly outperforms models that lack such guidance, in terms of classification accuracy, robustness, interpretability, and data efficiency, while also achieving improvements in fairness. These findings highlight TRUECAM as a versatile wrapper framework for digital pathology AI models with diverse architectural designs, promoting their responsible and effective applications in real-world settings.
Abstract:Partial label learning (PLL) is a complicated weakly supervised multi-classification task compounded by class imbalance. Currently, existing methods only rely on inter-class pseudo-labeling from inter-class features, often overlooking the significant impact of the intra-class imbalanced features combined with the inter-class. To address these limitations, we introduce Granular Ball Representation for Imbalanced PLL (GBRIP), a novel framework for imbalanced PLL. GBRIP utilizes coarse-grained granular ball representation and multi-center loss to construct a granular ball-based nfeature space through unsupervised learning, effectively capturing the feature distribution within each class. GBRIP mitigates the impact of confusing features by systematically refining label disambiguation and estimating imbalance distributions. The novel multi-center loss function enhances learning by emphasizing the relationships between samples and their respective centers within the granular balls. Extensive experiments on standard benchmarks demonstrate that GBRIP outperforms existing state-of-the-art methods, offering a robust solution to the challenges of imbalanced PLL.
Abstract:In this work, we propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks. The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images. The feasibility of distinguishing natural images from AI-generated ones is grounded in the distribution discrepancy between them. Predictive uncertainty offers an effective approach for capturing distribution shifts, thereby providing insights into detecting AI-generated images. Namely, as the distribution shift between training and testing data increases, model performance typically degrades, often accompanied by increased predictive uncertainty. Therefore, we propose to employ predictive uncertainty to reflect the discrepancies between AI-generated and natural images. In this context, the challenge lies in ensuring that the model has been trained over sufficient natural images to avoid the risk of determining the distribution of natural images as that of generated images. We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images. This leads to a simple yet effective method for detecting AI-generated images using large-scale vision models: images that induce high uncertainty are identified as AI-generated. Comprehensive experiments across multiple benchmarks demonstrate the effectiveness of our method.
Abstract:Clustering complex data in the form of attributed graphs has attracted increasing attention, where appropriate graph representation is a critical prerequisite for accurate cluster analysis. However, the Graph Convolutional Network will homogenize the representation of graph nodes due to the well-known over-smoothing effect. This limits the network architecture to a shallow one, losing the ability to capture the critical global distribution information for clustering. Therefore, we propose a generalized graph auto-encoder network, which introduces quaternion operations to the encoders to achieve efficient structured feature representation learning without incurring deeper network and larger-scale parameters. The generalization of our method lies in the following two aspects: 1) connecting the quaternion operation naturally suitable for four feature components with graph data of arbitrary attribute dimensions, and 2) introducing a generalized graph clustering objective as a loss term to obtain clustering-friendly representations without requiring a pre-specified number of clusters $k$. It turns out that the representations of nodes learned by the proposed Graph Clustering based on Generalized Quaternion representation learning (GCGQ) are more discriminative, containing global distribution information, and are more general, suiting downstream clustering under different $k$s. Extensive experiments including significance tests, ablation studies, and qualitative results, illustrate the superiority of GCGQ. The source code is temporarily opened at \url{https://anonymous.4open.science/r/ICLR-25-No7181-codes}.
Abstract:Categorical data composed of nominal valued attributes are ubiquitous in knowledge discovery and data mining tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to intuitively understand. Clustering is a popular technique suitable for data analysis. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. Therefore, the cluster analysis of categorical data is considered a critical but challenging problem. This paper introduces the new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding the categorical data clusters. To automatically obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It turns out that clustering with order learning achieves superior clustering accuracy, and the learned orders provide intuition for understanding the cluster distribution of categorical data. Extensive experiments with statistical evidence and case studies have verified the effectiveness of the new ``order is all you need'' insight and the proposed method.
Abstract:3D Gaussian Splatting (3DGS) has become a crucial method for acquiring 3D assets. To protect the copyright of these assets, digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models. However, existing watermarking methods for meshes, point clouds, and implicit radiance fields cannot be directly applied to 3DGS models, as 3DGS models use explicit 3D Gaussians with distinct structures and do not rely on neural networks. Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images. In our work, we propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS. At the message decoding stage, the copyright messages can be reliably extracted from both 3D Gaussians and 2D rendered images even under various forms of 3D and 2D distortions. We conduct extensive experiments on the Blender, LLFF and MipNeRF-360 datasets to validate the effectiveness of our proposed method, demonstrating state-of-the-art performance on both message decoding accuracy and view synthesis quality.
Abstract:Long-tail learning has garnered widespread attention and achieved significant progress in recent times. However, even with pre-trained prior knowledge, models still exhibit weaker generalization performance on tail classes. The promising Sharpness-Aware Minimization (SAM) can effectively improve the generalization capability of models by seeking out flat minima in the loss landscape, which, however, comes at the cost of doubling the computational time. Since the update rule of SAM necessitates two consecutive (non-parallelizable) forward and backpropagation at each step. To address this issue, we propose a novel method called Random SAM prompt tuning (RSAM-PT) to improve the model generalization, requiring only one-step gradient computation at each step. Specifically, we search for the gradient descent direction within a random neighborhood of the parameters during each gradient update. To amplify the impact of tail-class samples and avoid overfitting, we employ the deferred re-weight scheme to increase the significance of tail-class samples. The classification accuracy of long-tailed data can be significantly improved by the proposed RSAM-PT, particularly for tail classes. RSAM-PT achieves the state-of-the-art performance of 90.3\%, 76.5\%, and 50.1\% on benchmark datasets CIFAR100-LT (IF 100), iNaturalist 2018, and Places-LT, respectively. The source code is temporarily available at https://github.com/Keke921/GNM-PT.
Abstract:One-shot Federated Learning (OFL) significantly reduces communication costs in FL by aggregating trained models only once. However, the performance of advanced OFL methods is far behind the normal FL. In this work, we provide a causal view to find that this performance drop of OFL methods comes from the isolation problem, which means that local isolatedly trained models in OFL may easily fit to spurious correlations due to the data heterogeneity. From the causal perspective, we observe that the spurious fitting can be alleviated by augmenting intermediate features from other clients. Built upon our observation, we propose a novel learning approach to endow OFL with superb performance and low communication and storage costs, termed as FuseFL. Specifically, FuseFL decomposes neural networks into several blocks, and progressively trains and fuses each block following a bottom-up manner for feature augmentation, introducing no additional communication costs. Comprehensive experiments demonstrate that FuseFL outperforms existing OFL and ensemble FL by a significant margin. We conduct comprehensive experiments to show that FuseFL supports high scalability of clients, heterogeneous model training, and low memory costs. Our work is the first attempt using causality to analyze and alleviate data heterogeneity of OFL.
Abstract:Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remain mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (< 5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.