Abstract:Surgical interventions, particularly in neurology, represent complex and high-stakes scenarios that impose substantial cognitive burdens on surgical teams. Although deliberate education and practice can enhance cognitive capabilities, surgical training opportunities remain limited due to patient safety concerns. To address these cognitive challenges in surgical training and operation, we propose SurgBox, an agent-driven sandbox framework to systematically enhance the cognitive capabilities of surgeons in immersive surgical simulations. Specifically, our SurgBox leverages large language models (LLMs) with tailored Retrieval-Augmented Generation (RAG) to authentically replicate various surgical roles, enabling realistic training environments for deliberate practice. In particular, we devise Surgery Copilot, an AI-driven assistant to actively coordinate the surgical information stream and support clinical decision-making, thereby diminishing the cognitive workload of surgical teams during surgery. By incorporating a novel Long-Short Memory mechanism, our Surgery Copilot can effectively balance immediate procedural assistance with comprehensive surgical knowledge. Extensive experiments using real neurosurgical procedure records validate our SurgBox framework in both enhancing surgical cognitive capabilities and supporting clinical decision-making. By providing an integrated solution for training and operational support to address cognitive challenges, our SurgBox framework advances surgical education and practice, potentially transforming surgical outcomes and healthcare quality. The code is available at https://github.com/franciszchen/SurgBox.
Abstract:Large-scale multiple-input multiple-output (MIMO) holds great promise for the fifth-generation (5G) and future communication systems. In near-field scenarios, the spherical wavefront model is commonly utilized to accurately depict the propagation characteristics of large-scale MIMO communication channels. However, employing this modeling method necessitates the computation of angle and distance parameters for each antenna element, resulting in challenges regarding computational complexity. To solve this problem, we introduce a subarray decomposition scheme with the purpose of dividing the whole large-scale antenna array into several smaller subarrays. This scheme is implemented in the near-field channel modeling for large-scale MIMO communications between the base stations (BS) and the mobile receiver (MR). Essential channel propagation statistics, such as spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (CFs), and channel capacities, are derived and discussed. A comprehensive analysis is conducted to investigate the influence of the height of the BS, motion characteristics of the MR, and antenna configurations on the channel statistics. The proposed channel model criterions, such as the modeling precision and computational complexity, are also theoretically compared. Numerical results demonstrate the effectiveness of the presented communication model in obtaining a good tradeoff between modeling precision and computational complexity.
Abstract:Text-to-Image (T2I) Diffusion Models (DMs) have garnered widespread attention for their impressive advancements in image generation. However, their growing popularity has raised ethical and social concerns related to key non-functional properties of trustworthiness, such as robustness, fairness, security, privacy, factuality, and explainability, similar to those in traditional deep learning (DL) tasks. Conventional approaches for studying trustworthiness in DL tasks often fall short due to the unique characteristics of T2I DMs, e.g., the multi-modal nature. Given the challenge, recent efforts have been made to develop new methods for investigating trustworthiness in T2I DMs via various means, including falsification, enhancement, verification \& validation and assessment. However, there is a notable lack of in-depth analysis concerning those non-functional properties and means. In this survey, we provide a timely and focused review of the literature on trustworthy T2I DMs, covering a concise-structured taxonomy from the perspectives of property, means, benchmarks and applications. Our review begins with an introduction to essential preliminaries of T2I DMs, and then we summarise key definitions/metrics specific to T2I tasks and analyses the means proposed in recent literature based on these definitions/metrics. Additionally, we review benchmarks and domain applications of T2I DMs. Finally, we highlight the gaps in current research, discuss the limitations of existing methods, and propose future research directions to advance the development of trustworthy T2I DMs. Furthermore, we keep up-to-date updates in this field to track the latest developments and maintain our GitHub repository at: https://github.com/wellzline/Trustworthy_T2I_DMs
Abstract:To accelerate Magnetic Resonance (MR) imaging procedures, Multi-Contrast MR Reconstruction (MCMR) has become a prevalent trend that utilizes an easily obtainable modality as an auxiliary to support high-quality reconstruction of the target modality with under-sampled k-space measurements. The exploration of global dependency and complementary information across different modalities is essential for MCMR. However, existing methods either struggle to capture global dependency due to the limited receptive field or suffer from quadratic computational complexity. To tackle this dilemma, we propose a novel Frequency and Spatial Mutual Learning Network (FSMNet), which efficiently explores global dependencies across different modalities. Specifically, the features for each modality are extracted by the Frequency-Spatial Feature Extraction (FSFE) module, featuring a frequency branch and a spatial branch. Benefiting from the global property of the Fourier transform, the frequency branch can efficiently capture global dependency with an image-size receptive field, while the spatial branch can extract local features. To exploit complementary information from the auxiliary modality, we propose a Cross-Modal Selective fusion (CMS-fusion) module that selectively incorporate the frequency and spatial features from the auxiliary modality to enhance the corresponding branch of the target modality. To further integrate the enhanced global features from the frequency branch and the enhanced local features from the spatial branch, we develop a Frequency-Spatial fusion (FS-fusion) module, resulting in a comprehensive feature representation for the target modality. Extensive experiments on the BraTS and fastMRI datasets demonstrate that the proposed FSMNet achieves state-of-the-art performance for the MCMR task with different acceleration factors. The code is available at: https://github.com/qic999/FSMNet.
Abstract:Single-image depth estimation is essential for endoscopy tasks such as localization, reconstruction, and augmented reality. Most existing methods in surgical scenes focus on in-domain depth estimation, limiting their real-world applicability. This constraint stems from the scarcity and inferior labeling quality of medical data for training. In this work, we present EndoOmni, the first foundation model for zero-shot cross-domain depth estimation for endoscopy. To harness the potential of diverse training data, we refine the advanced self-learning paradigm that employs a teacher model to generate pseudo-labels, guiding a student model trained on large-scale labeled and unlabeled data. To address training disturbance caused by inherent noise in depth labels, we propose a robust training framework that leverages both depth labels and estimated confidence from the teacher model to jointly guide the student model training. Moreover, we propose a weighted scale-and-shift invariant loss to adaptively adjust learning weights based on label confidence, thus imposing learning bias towards cleaner label pixels while reducing the influence of highly noisy pixels. Experiments on zero-shot relative depth estimation show that our EndoOmni improves state-of-the-art methods in medical imaging for 41\% and existing foundation models for 25\% in terms of absolute relative error on specific dataset. Furthermore, our model provides strong initialization for fine-tuning to metric depth estimation, maintaining superior performance in both in-domain and out-of-domain scenarios. The source code will be publicly available.
Abstract:Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
Abstract:The field of computer vision applied to videos of minimally invasive surgery is ever-growing. Workflow recognition pertains to the automated recognition of various aspects of a surgery: including which surgical steps are performed; and which surgical instruments are used. This information can later be used to assist clinicians when learning the surgery; during live surgery; and when writing operation notes. The Pituitary Vision (PitVis) 2023 Challenge tasks the community to step and instrument recognition in videos of endoscopic pituitary surgery. This is a unique task when compared to other minimally invasive surgeries due to the smaller working space, which limits and distorts vision; and higher frequency of instrument and step switching, which requires more precise model predictions. Participants were provided with 25-videos, with results presented at the MICCAI-2023 conference as part of the Endoscopic Vision 2023 Challenge in Vancouver, Canada, on 08-Oct-2023. There were 18-submissions from 9-teams across 6-countries, using a variety of deep learning models. A commonality between the top performing models was incorporating spatio-temporal and multi-task methods, with greater than 50% and 10% macro-F1-score improvement over purely spacial single-task models in step and instrument recognition respectively. The PitVis-2023 Challenge therefore demonstrates state-of-the-art computer vision models in minimally invasive surgery are transferable to a new dataset, with surgery specific techniques used to enhance performance, progressing the field further. Benchmark results are provided in the paper, and the dataset is publicly available at: https://doi.org/10.5522/04/26531686.
Abstract:Open-vocabulary semantic segmentation aims to segment and recognize semantically meaningful regions based on text-based descriptions during inference. A typical solution to address this task is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between open- and close-vocabulary recognition. As VLMs are usually pretrained with low-resolution images (e.g. $224\times224$), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. Although employing additional image backbones for high-resolution inputs can mitigate this issue, it may also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary semantic segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by learnable convolutional and scale attention layers. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics by performing cross-attention between object queries and multi-resolution CLIP features within the region of interests. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary semantic segmentation benchmarks, particularly for high-resolution inputs, establishing new standards for open-vocabulary semantic segmentation.
Abstract:Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
Abstract:Recently, multimodal deep learning, which integrates histopathology slides and molecular biomarkers, has achieved a promising performance in glioma grading. Despite great progress, due to the intra-modality complexity and inter-modality heterogeneity, existing studies suffer from inadequate histopathology representation learning and inefficient molecular-pathology knowledge alignment. These two issues hinder existing methods to precisely interpret diagnostic molecular-pathology features, thereby limiting their grading performance. Moreover, the real-world applicability of existing multimodal approaches is significantly restricted as molecular biomarkers are not always available during clinical deployment. To address these problems, we introduce a novel Focus on Focus (FoF) framework with paired pathology-genomic training and applicable pathology-only inference, enhancing molecular-pathology representation effectively. Specifically, we propose a Focus-oriented Representation Learning (FRL) module to encourage the model to identify regions positively or negatively related to glioma grading and guide it to focus on the diagnostic areas with a consistency constraint. To effectively link the molecular biomarkers to morphological features, we propose a Multi-view Cross-modal Alignment (MCA) module that projects histopathology representations into molecular subspaces, aligning morphological features with corresponding molecular biomarker status by supervised contrastive learning. Experiments on the TCGA GBM-LGG dataset demonstrate that our FoF framework significantly improves the glioma grading. Remarkably, our FoF achieves superior performance using only histopathology slides compared to existing multimodal methods. The source code is available at https://github.com/peterlipan/FoF.