bupt.edu.cn
Abstract:Recent progress in large-scale reinforcement learning (RL) has notably enhanced the reasoning capabilities of large language models (LLMs), especially in mathematical domains. However, current multimodal LLMs (MLLMs) for mathematical reasoning often rely on one-to-one image-text pairs and single-solution supervision, overlooking the diversity of valid reasoning perspectives and internal reflections. In this work, we introduce MathV-DP, a novel dataset that captures multiple diverse solution trajectories for each image-question pair, fostering richer reasoning supervision. We further propose Qwen-VL-DP, a model built upon Qwen-VL, fine-tuned with supervised learning and enhanced via group relative policy optimization (GRPO), a rule-based RL approach that integrates correctness discrimination and diversity-aware reward functions. Our method emphasizes learning from varied reasoning perspectives and distinguishing between correct yet distinct solutions. Extensive experiments on the MathVista's minitest and Math-V benchmarks demonstrate that Qwen-VL-DP significantly outperforms prior base MLLMs in both accuracy and generative diversity, highlighting the importance of incorporating diverse perspectives and reflective reasoning in multimodal mathematical reasoning.
Abstract:Designing effective reward functions is a cornerstone of reinforcement learning (RL), yet it remains a challenging process due to the inefficiencies and inconsistencies inherent in conventional reward engineering methodologies. Recent advances have explored leveraging large language models (LLMs) to automate reward function design. However, their suboptimal performance in numerical optimization often yields unsatisfactory reward quality, while the evolutionary search paradigm demonstrates inefficient utilization of simulation resources, resulting in prohibitively lengthy design cycles with disproportionate computational overhead. To address these challenges, we propose the Uncertainty-aware Reward Design Process (URDP), a novel framework that integrates large language models to streamline reward function design and evaluation in RL environments. URDP quantifies candidate reward function uncertainty based on self-consistency analysis, enabling simulation-free identification of ineffective reward components while discovering novel reward components. Furthermore, we introduce uncertainty-aware Bayesian optimization (UABO), which incorporates uncertainty estimation to significantly enhance hyperparameter configuration efficiency. Finally, we construct a bi-level optimization architecture by decoupling the reward component optimization and the hyperparameter tuning. URDP orchestrates synergistic collaboration between the reward logic reasoning of the LLMs and the numerical optimization strengths of the Bayesian Optimization. We conduct a comprehensive evaluation of URDP across 35 diverse tasks spanning three benchmark environments. Our experimental results demonstrate that URDP not only generates higher-quality reward functions but also achieves significant improvements in the efficiency of automated reward design compared to existing approaches.
Abstract:PanTS is a large-scale, multi-institutional dataset curated to advance research in pancreatic CT analysis. It contains 36,390 CT scans from 145 medical centers, with expert-validated, voxel-wise annotations of over 993,000 anatomical structures, covering pancreatic tumors, pancreas head, body, and tail, and 24 surrounding anatomical structures such as vascular/skeletal structures and abdominal/thoracic organs. Each scan includes metadata such as patient age, sex, diagnosis, contrast phase, in-plane spacing, slice thickness, etc. AI models trained on PanTS achieve significantly better performance in pancreatic tumor detection, localization, and segmentation compared to those trained on existing public datasets. Our analysis indicates that these gains are directly attributable to the 16x larger-scale tumor annotations and indirectly supported by the 24 additional surrounding anatomical structures. As the largest and most comprehensive resource of its kind, PanTS offers a new benchmark for developing and evaluating AI models in pancreatic CT analysis.
Abstract:Recent studies have focused on leveraging large-scale artificial intelligence (LAI) models to improve semantic representation and compression capabilities. However, the substantial computational demands of LAI models pose significant challenges for real-time communication scenarios. To address this, this paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models, effectively reducing model complexity and computation latency. Nevertheless, the inherent complexity of LAI models leads to prolonged inference times during distillation, while their lack of channel awareness compromises the distillation performance. These limitations make standard KD methods unsuitable for task-oriented semantic communication scenarios. To address these issues, we propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference, significantly improving efficiency. Furthermore, a channel adaptive module is incorporated to dynamically adjust the transmitted semantic information based on varying channel conditions, enhancing communication reliability and adaptability. In addition, an information bottleneck-based loss function is derived to guide the fast distillation process. Simulation results verify that the proposed scheme outperform baselines in term of task accuracy, model size, computation latency, and training data requirements.
Abstract:Multimodal Large Language Models (MLLMs) have enabled transformative advancements across diverse applications but remain susceptible to safety threats, especially jailbreak attacks that induce harmful outputs. To systematically evaluate and improve their safety, we organized the Adversarial Testing & Large-model Alignment Safety Grand Challenge (ATLAS) 2025}. This technical report presents findings from the competition, which involved 86 teams testing MLLM vulnerabilities via adversarial image-text attacks in two phases: white-box and black-box evaluations. The competition results highlight ongoing challenges in securing MLLMs and provide valuable guidance for developing stronger defense mechanisms. The challenge establishes new benchmarks for MLLM safety evaluation and lays groundwork for advancing safer multimodal AI systems. The code and data for this challenge are openly available at https://github.com/NY1024/ATLAS_Challenge_2025.
Abstract:Spatial-temporal causal time series (STC-TS) involve region-specific temporal observations driven by causally relevant covariates and interconnected across geographic or network-based spaces. Existing methods often model spatial and temporal dynamics independently and overlook causality-driven probabilistic forecasting, limiting their predictive power. To address this, we propose STOAT (Spatial-Temporal Probabilistic Causal Inference Network), a novel framework for probabilistic forecasting in STC-TS. The proposed method extends a causal inference approach by incorporating a spatial relation matrix that encodes interregional dependencies (e.g. proximity or connectivity), enabling spatially informed causal effect estimation. The resulting latent series are processed by deep probabilistic models to estimate the parameters of the distributions, enabling calibrated uncertainty modeling. We further explore multiple output distributions (e.g., Gaussian, Student's-$t$, Laplace) to capture region-specific variability. Experiments on COVID-19 data across six countries demonstrate that STOAT outperforms state-of-the-art probabilistic forecasting models (DeepAR, DeepVAR, Deep State Space Model, etc.) in key metrics, particularly in regions with strong spatial dependencies. By bridging causal inference and geospatial probabilistic forecasting, STOAT offers a generalizable framework for complex spatial-temporal tasks, such as epidemic management.
Abstract:This paper reports on the NTIRE 2025 challenge on HR Depth From images of Specular and Transparent surfaces, held in conjunction with the New Trends in Image Restoration and Enhancement (NTIRE) workshop at CVPR 2025. This challenge aims to advance the research on depth estimation, specifically to address two of the main open issues in the field: high-resolution and non-Lambertian surfaces. The challenge proposes two tracks on stereo and single-image depth estimation, attracting about 177 registered participants. In the final testing stage, 4 and 4 participating teams submitted their models and fact sheets for the two tracks.
Abstract:To tackle the threat of fake news, the task of detecting and grounding multi-modal media manipulation DGM4 has received increasing attention. However, most state-of-the-art methods fail to explore the fine-grained consistency within local content, usually resulting in an inadequate perception of detailed forgery and unreliable results. In this paper, we propose a novel approach named Contextual-Semantic Consistency Learning (CSCL) to enhance the fine-grained perception ability of forgery for DGM4. Two branches for image and text modalities are established, each of which contains two cascaded decoders, i.e., Contextual Consistency Decoder (CCD) and Semantic Consistency Decoder (SCD), to capture within-modality contextual consistency and across-modality semantic consistency, respectively. Both CCD and SCD adhere to the same criteria for capturing fine-grained forgery details. To be specific, each module first constructs consistency features by leveraging additional supervision from the heterogeneous information of each token pair. Then, the forgery-aware reasoning or aggregating is adopted to deeply seek forgery cues based on the consistency features. Extensive experiments on DGM4 datasets prove that CSCL achieves new state-of-the-art performance, especially for the results of grounding manipulated content. Codes and weights are avaliable at https://github.com/liyih/CSCL.
Abstract:In recent years, graph anomaly detection has found extensive applications in various domains such as social, financial, and communication networks. However, anomalies in graph-structured data present unique challenges, including label scarcity, ill-defined anomalies, and varying anomaly types, making supervised or semi-supervised methods unreliable. Researchers often adopt unsupervised approaches to address these challenges, assuming that anomalies deviate significantly from the normal data distribution. Yet, when the available data is insufficient, capturing the normal distribution accurately and comprehensively becomes difficult. To overcome this limitation, we propose to utilize external graph data (i.e., graph data in the wild) to help anomaly detection tasks. This naturally raises the question: How can we use external data to help graph anomaly detection tasks? To answer this question, we propose a framework called Wild-GAD. It is built upon a unified database, UniWildGraph, which comprises a large and diverse collection of graph data with broad domain coverage, ample data volume, and a unified feature space. Further, we develop selection criteria based on representativity and diversity to identify the most suitable external data for anomaly detection task. Extensive experiments on six real-world datasets demonstrate the effectiveness of Wild-GAD. Compared to the baseline methods, our framework has an average 18% AUCROC and 32% AUCPR improvement over the best-competing methods.
Abstract:Text-based person retrieval aims to identify a target individual from a gallery of images based on a natural language description. It presents a significant challenge due to the complexity of real-world scenes and the ambiguity of appearance-related descriptions. Existing methods primarily emphasize appearance-based cross-modal retrieval, often neglecting the contextual information embedded within the scene, which can offer valuable complementary insights for retrieval. To address this, we introduce SCENEPERSON-13W, a large-scale dataset featuring over 100,000 scenes with rich annotations covering both pedestrian appearance and environmental cues. Based on this, we propose SA-Person, a two-stage retrieval framework. In the first stage, it performs discriminative appearance grounding by aligning textual cues with pedestrian-specific regions. In the second stage, it introduces SceneRanker, a training-free, scene-aware re-ranking method leveraging multimodal large language models to jointly reason over pedestrian appearance and the global scene context. Experiments on SCENEPERSON-13W validate the effectiveness of our framework in challenging scene-level retrieval scenarios. The code and dataset will be made publicly available.