Abstract:Medical image registration is a critical task that estimates the spatial correspondence between pairs of images. However, current traditional and deep-learning-based methods rely on similarity measures to generate a deforming field, which often results in disproportionate volume changes in dissimilar regions, especially in tumor regions. These changes can significantly alter the tumor size and underlying anatomy, which limits the practical use of image registration in clinical diagnosis. To address this issue, we have formulated image registration with tumors as a constraint problem that preserves tumor volumes while maximizing image similarity in other normal regions. Our proposed strategy involves a two-stage process. In the first stage, we use similarity-based registration to identify potential tumor regions by their volume change, generating a soft tumor mask accordingly. In the second stage, we propose a volume-preserving registration with a novel adaptive volume-preserving loss that penalizes the change in size adaptively based on the masks calculated from the previous stage. Our approach balances image similarity and volume preservation in different regions, i.e., normal and tumor regions, by using soft tumor masks to adjust the imposition of volume-preserving loss on each one. This ensures that the tumor volume is preserved during the registration process. We have evaluated our strategy on various datasets and network architectures, demonstrating that our method successfully preserves the tumor volume while achieving comparable registration results with state-of-the-art methods. Our codes is available at: \url{https://dddraxxx.github.io/Volume-Preserving-Registration/}.
Abstract:Medical image segmentation is almost the most important pre-processing procedure in computer-aided diagnosis but is also a very challenging task due to the complex shapes of segments and various artifacts caused by medical imaging, (i.e., low-contrast tissues, and non-homogenous textures). In this paper, we propose a simple yet effective segmentation framework that incorporates the geometric prior and contrastive similarity into the weakly-supervised segmentation framework in a loss-based fashion. The proposed geometric prior built on point cloud provides meticulous geometry to the weakly-supervised segmentation proposal, which serves as better supervision than the inherent property of the bounding-box annotation (i.e., height and width). Furthermore, we propose contrastive similarity to encourage organ pixels to gather around in the contrastive embedding space, which helps better distinguish low-contrast tissues. The proposed contrastive embedding space can make up for the poor representation of the conventionally-used gray space. Extensive experiments are conducted to verify the effectiveness and the robustness of the proposed weakly-supervised segmentation framework. The proposed framework is superior to state-of-the-art weakly-supervised methods on the following publicly accessible datasets: LiTS 2017 Challenge, KiTS 2021 Challenge, and LPBA40. We also dissect our method and evaluate the performance of each component.
Abstract:Despite recent breakthroughs in deep learning methods for image lighting enhancement, they are inferior when applied to portraits because 3D facial information is ignored in their models. To address this, we present a novel deep learning framework for portrait lighting enhancement based on 3D facial guidance. Our framework consists of two stages. In the first stage, corrected lighting parameters are predicted by a network from the input bad lighting image, with the assistance of a 3D morphable model and a differentiable renderer. Given the predicted lighting parameter, the differentiable renderer renders a face image with corrected shading and texture, which serves as the 3D guidance for learning image lighting enhancement in the second stage. To better exploit the long-range correlations between the input and the guidance, in the second stage, we design an image-to-image translation network with a novel transformer architecture, which automatically produces a lighting-enhanced result. Experimental results on the FFHQ dataset and in-the-wild images show that the proposed method outperforms state-of-the-art methods in terms of both quantitative metrics and visual quality. We will publish our dataset along with more results on https://cassiepython.github.io/egsr/index.html.
Abstract:The morphology and distribution of microcalcifications in a cluster are the most important characteristics for radiologists to diagnose breast cancer. However, it is time-consuming and difficult for radiologists to identify these characteristics, and there also lacks of effective solutions for automatic characterization. In this study, we proposed a multi-task deep graph convolutional network (GCN) method for the automatic characterization of morphology and distribution of microcalcifications in mammograms. Our proposed method transforms morphology and distribution characterization into node and graph classification problem and learns the representations concurrently. Through extensive experiments, we demonstrate significant improvements with the proposed multi-task GCN comparing to the baselines. Moreover, the achieved improvements can be related to and enhance clinical understandings. We explore, for the first time, the application of GCNs in microcalcification characterization that suggests the potential of graph learning for more robust understanding of medical images.
Abstract:One-shot weight sharing methods have recently drawn great attention in neural architecture search due to high efficiency and competitive performance. However, weight sharing across models has an inherent deficiency, i.e., insufficient training of subnetworks in the hypernetwork. To alleviate this problem, we present a simple yet effective architecture distillation method. The central idea is that subnetworks can learn collaboratively and teach each other throughout the training process, aiming to boost the convergence of individual models. We introduce the concept of prioritized path, which refers to the architecture candidates exhibiting superior performance during training. Distilling knowledge from the prioritized paths is able to boost the training of subnetworks. Since the prioritized paths are changed on the fly depending on their performance and complexity, the final obtained paths are the cream of the crop. We directly select the most promising one from the prioritized paths as the final architecture, without using other complex search methods, such as reinforcement learning or evolution algorithms. The experiments on ImageNet verify such path distillation method can improve the convergence ratio and performance of the hypernetwork, as well as boosting the training of subnetworks. The discovered architectures achieve superior performance compared to the recent MobileNetV3 and EfficientNet families under aligned settings. Moreover, the experiments on object detection and more challenging search space show the generality and robustness of the proposed method. Code and models are available at https://github.com/microsoft/cream.git.
Abstract:In clinical practice, human radiologists actually review medical images with high resolution monitors and zoom into region of interests (ROIs) for a close-up examination. Inspired by this observation, we propose a hierarchical graph neural network to detect abnormal lesions from medical images by automatically zooming into ROIs. We focus on mammogram analysis for breast cancer diagnosis for this study. Our proposed network consist of two graph attention networks performing two tasks: (1) node classification to predict whether to zoom into next level; (2) graph classification to classify whether a mammogram is normal/benign or malignant. The model is trained and evaluated on INbreast dataset and we obtain comparable AUC with state-of-the-art methods.
Abstract:In critical care, intensivists are required to continuously monitor high dimensional vital signs and lab measurements to detect and diagnose acute patient conditions. This has always been a challenging task. In this study, we propose a novel self-correcting deep learning prediction approach to address this challenge. We focus on an example of the prediction of acute kidney injury (AKI). Compared with the existing models, our method has a number of distinct features: we utilized the accumulative data of patients in ICU; we developed a self-correcting mechanism that feeds errors from the previous predictions back into the network; we also proposed a regularization method that takes into account not only the model's prediction error on the label but also its estimation errors on the input data. This mechanism is applied in both regression and classification tasks. We compared the performance of our proposed method with the conventional deep learning models on two real-world clinical datasets and demonstrated that our proposed model constantly outperforms these baseline models. In particular, the proposed model achieved area under ROC curve at 0.893 on the MIMIC III dataset, and 0.871 on the Philips eICU dataset.