Abstract:Tokens are basic elements in the datasets for LLM training. It is well-known that many tokens representing Chinese phrases in the vocabulary of GPT (4o/4o-mini/o1/o3/4.5/4.1/o4-mini) are indicating contents like pornography or online gambling. Based on this observation, our goal is to locate Polluted Chinese (PoC) tokens in LLMs and study the relationship between PoC tokens' existence and training data. (1) We give a formal definition and taxonomy of PoC tokens based on the GPT's vocabulary. (2) We build a PoC token detector via fine-tuning an LLM to label PoC tokens in vocabularies by considering each token's both semantics and related contents from the search engines. (3) We study the speculation on the training data pollution via PoC tokens' appearances (token ID). Experiments on GPT and other 23 LLMs indicate that tokens widely exist while GPT's vocabulary behaves the worst: more than 23% long Chinese tokens (i.e., a token with more than two Chinese characters) are either porn or online gambling. We validate the accuracy of our speculation method on famous pre-training datasets like C4 and Pile. Then, considering GPT-4o, we speculate that the ratio of "Yui Hatano" related webpages in GPT-4o's training data is around 0.5%.
Abstract:Jailbreak attacks pose a serious threat to the safety of Large Language Models (LLMs) by crafting adversarial prompts that bypass alignment mechanisms, causing the models to produce harmful, restricted, or biased content. In this paper, we propose SafeLLM, a novel unlearning-based defense framework that unlearn the harmful knowledge from LLMs while preserving linguistic fluency and general capabilities. SafeLLM employs a three-stage pipeline: (1) dynamic unsafe output detection using a hybrid approach that integrates external classifiers with model-internal evaluations; (2) token-level harmful content tracing through feedforward network (FFN) activations to localize harmful knowledge; and (3) constrained optimization to suppress unsafe behavior without degrading overall model quality. SafeLLM achieves targeted and irreversible forgetting by identifying and neutralizing FFN substructures responsible for harmful generation pathways. Extensive experiments on prominent LLMs (Vicuna, LLaMA, and GPT-J) across multiple jailbreak benchmarks show that SafeLLM substantially reduces attack success rates while maintaining high general-purpose performance. Compared to standard defense methods such as supervised fine-tuning and direct preference optimization, SafeLLM offers stronger safety guarantees, more precise control over harmful behavior, and greater robustness to unseen attacks. Moreover, SafeLLM maintains the general performance after the harmful knowledge unlearned. These results highlight unlearning as a promising direction for scalable and effective LLM safety.
Abstract:With the development of social media networks, rumor detection models have attracted more and more attention. Whereas, these models primarily focus on classifying contexts as rumors or not, lacking the capability to locate and mark specific rumor content. To address this limitation, this paper proposes a novel rumor detection model named Insight Rumors to locate and mark rumor content within textual data. Specifically, we propose the Bidirectional Mamba2 Network with Dot-Product Attention (Att_BiMamba2), a network that constructs a bidirectional Mamba2 model and applies dot-product attention to weight and combine the outputs from both directions, thereby enhancing the representation of high-dimensional rumor features. Simultaneously, a Rumor Locating and Marking module is designed to locate and mark rumors. The module constructs a skip-connection network to project high-dimensional rumor features onto low-dimensional label features. Moreover, Conditional Random Fields (CRF) is employed to impose strong constraints on the output label features, ensuring accurate rumor content location. Additionally, a labeled dataset for rumor locating and marking is constructed, with the effectiveness of the proposed model is evaluated through comprehensive experiments. Extensive experiments indicate that the proposed scheme not only detects rumors accurately but also locates and marks them in context precisely, outperforming state-of-the-art schemes that can only discriminate rumors roughly.
Abstract:In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
Abstract:Visual Prompting (VP), an efficient method for transfer learning, has shown its potential in vision tasks. However, previous works focus exclusively on VP from standard source models, it is still unknown how it performs under the scenario of a robust source model: Can the robustness of the source model be successfully inherited? Does VP also encounter the same trade-off between robustness and generalization ability as the source model during this process? If such a trade-off exists, is there a strategy specifically tailored to VP to mitigate this limitation? In this paper, we thoroughly explore these three questions for the first time and provide affirmative answers to them. To mitigate the trade-off faced by VP, we propose a strategy called Prompt Boundary Loosening (PBL). As a lightweight, plug-and-play strategy naturally compatible with VP, PBL effectively ensures the successful inheritance of robustness when the source model is a robust model, while significantly enhancing VP's generalization ability across various downstream datasets. Extensive experiments across various datasets show that our findings are universal and demonstrate the significant benefits of the proposed strategy.
Abstract:The paradigm of Intelligent DataPlane (IDP) embeds deep learning (DL) models on the network dataplane to enable intelligent traffic analysis at line-speed. However, the current use of the match-action table (MAT) abstraction on the dataplane is misaligned with DL inference, leading to several key limitations, including accuracy degradation, limited scale, and lack of generality. This paper proposes Pegasus to address these limitations. Pegasus translates DL operations into three dataplane-oriented primitives to achieve generality: Partition, Map, and SumReduce. Specifically, Partition "divides" high-dimensional features into multiple low-dimensional vectors, making them more suitable for the dataplane; Map "conquers" computations on the low-dimensional vectors in parallel with the technique of fuzzy matching, while SumReduce "combines" the computation results. Additionally, Pegasus employs Primitive Fusion to merge computations, improving scalability. Finally, Pegasus adopts full precision weights with fixed-point activations to improve accuracy. Our implementation on a P4 switch demonstrates that Pegasus can effectively support various types of DL models, including Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and AutoEncoder models on the dataplane. Meanwhile, Pegasus outperforms state-of-the-art approaches with an average accuracy improvement of up to 22.8%, along with up to 248x larger model size and 212x larger input scale.
Abstract:Growing concerns over data privacy and security highlight the importance of machine unlearning--removing specific data influences from trained models without full retraining. Techniques like Membership Inference Attacks (MIAs) are widely used to externally assess successful unlearning. However, existing methods face two key limitations: (1) maximizing MIA effectiveness (e.g., via online attacks) requires prohibitive computational resources, often exceeding retraining costs; (2) MIAs, designed for binary inclusion tests, struggle to capture granular changes in approximate unlearning. To address these challenges, we propose the Interpolated Approximate Measurement (IAM), a framework natively designed for unlearning inference. IAM quantifies sample-level unlearning completeness by interpolating the model's generalization-fitting behavior gap on queried samples. IAM achieves strong performance in binary inclusion tests for exact unlearning and high correlation for approximate unlearning--scalable to LLMs using just one pre-trained shadow model. We theoretically analyze how IAM's scoring mechanism maintains performance efficiently. We then apply IAM to recent approximate unlearning algorithms, revealing general risks of both over-unlearning and under-unlearning, underscoring the need for stronger safeguards in approximate unlearning systems. The code is available at https://github.com/Happy2Git/Unlearning_Inference_IAM.
Abstract:Open Relation Extraction (OpenRE) seeks to identify and extract novel relational facts between named entities from unlabeled data without pre-defined relation schemas. Traditional OpenRE methods typically assume that the unlabeled data consists solely of novel relations or is pre-divided into known and novel instances. However, in real-world scenarios, novel relations are arbitrarily distributed. In this paper, we propose a generalized OpenRE setting that considers unlabeled data as a mixture of both known and novel instances. To address this, we propose MixORE, a two-phase framework that integrates relation classification and clustering to jointly learn known and novel relations. Experiments on three benchmark datasets demonstrate that MixORE consistently outperforms competitive baselines in known relation classification and novel relation clustering. Our findings contribute to the advancement of generalized OpenRE research and real-world applications.
Abstract:Can a scientific simulation system be physically consistent, interpretable by design, and scalable across regimes--all at once? Despite decades of progress, this trifecta remains elusive. Classical methods like Kinetic Monte Carlo ensure thermodynamic accuracy but scale poorly; learning-based methods offer efficiency but often sacrifice physical consistency and interpretability. We present SwarmThinkers, a reinforcement learning framework that recasts atomic-scale simulation as a physically grounded swarm intelligence system. Each diffusing particle is modeled as a local decision-making agent that selects transitions via a shared policy network trained under thermodynamic constraints. A reweighting mechanism fuses learned preferences with transition rates, preserving statistical fidelity while enabling interpretable, step-wise decision making. Training follows a centralized-training, decentralized-execution paradigm, allowing the policy to generalize across system sizes, concentrations, and temperatures without retraining. On a benchmark simulating radiation-induced Fe-Cu alloy precipitation, SwarmThinkers is the first system to achieve full-scale, physically consistent simulation on a single A100 GPU, previously attainable only via OpenKMC on a supercomputer. It delivers up to 4963x (3185x on average) faster computation with 485x lower memory usage. By treating particles as decision-makers, not passive samplers, SwarmThinkers marks a paradigm shift in scientific simulation--one that unifies physical consistency, interpretability, and scalability through agent-driven intelligence.
Abstract:Fine-grained edited image detection of localized edits in images is crucial for assessing content authenticity, especially given that modern diffusion models and image editing methods can produce highly realistic manipulations. However, this domain faces three challenges: (1) Binary classifiers yield only a global real-or-fake label without providing localization; (2) Traditional computer vision methods often rely on costly pixel-level annotations; and (3) No large-scale, high-quality dataset exists for modern image-editing detection techniques. To address these gaps, we develop an automated data-generation pipeline to create FragFake, the first dedicated benchmark dataset for edited image detection, which includes high-quality images from diverse editing models and a wide variety of edited objects. Based on FragFake, we utilize Vision Language Models (VLMs) for the first time in the task of edited image classification and edited region localization. Experimental results show that fine-tuned VLMs achieve higher average Object Precision across all datasets, significantly outperforming pretrained models. We further conduct ablation and transferability analyses to evaluate the detectors across various configurations and editing scenarios. To the best of our knowledge, this work is the first to reformulate localized image edit detection as a vision-language understanding task, establishing a new paradigm for the field. We anticipate that this work will establish a solid foundation to facilitate and inspire subsequent research endeavors in the domain of multimodal content authenticity.