Abstract:Reflection removal of a single image remains a highly challenging task due to the complex entanglement between target scenes and unwanted reflections. Despite significant progress, existing methods are hindered by the scarcity of high-quality, diverse data and insufficient restoration priors, resulting in limited generalization across various real-world scenarios. In this paper, we propose Dereflection Any Image, a comprehensive solution with an efficient data preparation pipeline and a generalizable model for robust reflection removal. First, we introduce a dataset named Diverse Reflection Removal (DRR) created by randomly rotating reflective mediums in target scenes, enabling variation of reflection angles and intensities, and setting a new benchmark in scale, quality, and diversity. Second, we propose a diffusion-based framework with one-step diffusion for deterministic outputs and fast inference. To ensure stable learning, we design a three-stage progressive training strategy, including reflection-invariant finetuning to encourage consistent outputs across varying reflection patterns that characterize our dataset. Extensive experiments show that our method achieves SOTA performance on both common benchmarks and challenging in-the-wild images, showing superior generalization across diverse real-world scenes.
Abstract:Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.
Abstract:In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
Abstract:Medical Hyperspectral Imaging (MHSI) offers potential for computational pathology and precision medicine. However, existing CNN and Transformer struggle to balance segmentation accuracy and speed due to high spatial-spectral dimensionality. In this study, we leverage Mamba's global context modeling to propose a dual-stream architecture for joint spatial-spectral feature extraction. To address the limitation of Mamba's unidirectional aggregation, we introduce a recurrent spectral sequence representation to capture low-redundancy global spectral features. Experiments on a public Multi-Dimensional Choledoch dataset and a private Cervical Cancer dataset show that our method outperforms state-of-the-art approaches in segmentation accuracy while minimizing resource usage and achieving the fastest inference speed. Our code will be available at https://github.com/DeepMed-Lab-ECNU/MDN.
Abstract:Current approaches for training Process Reward Models (PRMs) often involve breaking down responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length into a fixed size. These approaches overlook the fact that specific words do not typically mark true decision points in a text. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word. This division method provides more decision-making information at each step, enhancing downstream tasks, such as reward model learning. Moreover, our method does not require manual annotation. We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks. Experimental results indicate that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. In addition, we provide a thorough analysis and case study on the PRM's performance, transferability, and generalization capabilities.
Abstract:This paper presents a pioneering exploration of the mechanisms underlying large foundation models' (LFMs) weights, aiming to simplify AI research. Through extensive observation and analysis on prevailing LFMs, we find that regardless of initialization strategies, their weights predominantly follow a Gaussian distribution, with occasional sharp, inverted T-shaped, or linear patterns. We further discover that the weights share the i.i.d. properties of Gaussian noise, and explore their direct relationship. We find that transformation weights can be derived from Gaussian noise, and they primarily serve to increase the standard deviation of pre-trained weights, with their standard deviation growing with layer depth. In other words, transformation weights broaden the acceptable deviation from the optimal weights, facilitating adaptation to downstream tasks. Building upon the above conclusions, we thoroughly discussed the nature of optimal weights, ultimately concluding that they should exhibit zero-mean, symmetry, and sparsity, with the sparse values being a truncated Gaussian distribution and a few outliers. Our experiments in LFM adaptation and editing demonstrate the effectiveness of these insights. We hope these findings can provide a foundational understanding to pave the way for future advancements in the LFM community.
Abstract:Text-based person search aims to retrieve the matched pedestrians from a large-scale image database according to the text description. The core difficulty of this task is how to extract effective details from pedestrian images and texts, and achieve cross-modal alignment in a common latent space. Prior works adopt image and text encoders pre-trained on unimodal data to extract global and local features from image and text respectively, and then global-local alignment is achieved explicitly. However, these approaches still lack the ability of understanding visual details, and the retrieval accuracy is still limited by identity confusion. In order to alleviate the above problems, we rethink the importance of visual features for text-based person search, and propose VFE-TPS, a Visual Feature Enhanced Text-based Person Search model. It introduces a pre-trained multimodal backbone CLIP to learn basic multimodal features and constructs Text Guided Masked Image Modeling task to enhance the model's ability of learning local visual details without explicit annotation. In addition, we design Identity Supervised Global Visual Feature Calibration task to guide the model learn identity-aware global visual features. The key finding of our study is that, with the help of our proposed auxiliary tasks, the knowledge embedded in the pre-trained CLIP model can be successfully adapted to text-based person search task, and the model's visual understanding ability is significantly enhanced. Experimental results on three benchmarks demonstrate that our proposed model exceeds the existing approaches, and the Rank-1 accuracy is significantly improved with a notable margin of about $1\%\sim9\%$. Our code can be found at https://github.com/zhangweifeng1218/VFE_TPS.
Abstract:Single-image 3D reconstruction remains a fundamental challenge in computer vision due to inherent geometric ambiguities and limited viewpoint information. Recent advances in Latent Video Diffusion Models (LVDMs) offer promising 3D priors learned from large-scale video data. However, leveraging these priors effectively faces three key challenges: (1) degradation in quality across large camera motions, (2) difficulties in achieving precise camera control, and (3) geometric distortions inherent to the diffusion process that damage 3D consistency. We address these challenges by proposing LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency. Specifically, we design an articulated trajectory strategy to generate video frames, which decomposes video sequences with large camera motions into ones with controllable small motions. Then we use robust neural matching models, i.e. MASt3R, to calibrate the camera poses of generated frames and produce corresponding point clouds. Finally, we propose a distortion-aware 3D Gaussian splatting representation, which can learn independent distortions between frames and output undistorted canonical Gaussians. Extensive experiments demonstrate that LiftImage3D achieves state-of-the-art performance on two challenging datasets, i.e. LLFF, DL3DV, and Tanks and Temples, and generalizes well to diverse in-the-wild images, from cartoon illustrations to complex real-world scenes.
Abstract:This paper tackles the challenge of automatically performing realistic surgical simulations from readily available surgical videos. Recent efforts have successfully integrated physically grounded dynamics within 3D Gaussians to perform high-fidelity simulations in well-reconstructed simulation environments from static scenes. However, they struggle with the geometric inconsistency in reconstructing simulation environments and unrealistic physical deformations in simulations of soft tissues when it comes to dynamic and complex surgical processes. In this paper, we propose SurgiSim, a novel automatic simulation system to overcome these limitations. To build a surgical simulation environment, we maintain a canonical 3D scene composed of 3D Gaussians coupled with a deformation field to represent a dynamic surgical scene. This process involves a multi-stage optimization with trajectory and anisotropic regularization, enhancing the geometry consistency of the canonical scene, which serves as the simulation environment. To achieve realistic physical simulations in this environment, we implement a Visco-Elastic deformation model based on the Maxwell model, effectively restoring the complex deformations of tissues. Additionally, we infer the physical parameters of tissues by minimizing the discrepancies between the input video and simulation results guided by estimated tissue motion, ensuring realistic simulation outcomes. Experiments on various surgical scenarios and interactions demonstrate SurgiSim's ability to perform realistic simulation of soft tissues among surgical procedures, showing its enormous potential for enhancing surgical training, planning, and robotic surgery systems. The project page is at https://namaenashibot.github.io/SurgiSim/.
Abstract:In the task of dense video captioning of Soccernet dataset, we propose to generate a video caption of each soccer action and locate the timestamp of the caption. Firstly, we apply Blip as our video caption framework to generate video captions. Then we locate the timestamp by using (1) multi-size sliding windows (2) temporal proposal generation and (3) proposal classification.