Abstract:Single-camera-training person re-identification (SCT re-ID) aims to train a re-ID model using SCT datasets where each person appears in only one camera. The main challenge of SCT re-ID is to learn camera-invariant feature representations without cross-camera same-person (CCSP) data as supervision. Previous methods address it by assuming that the most similar person should be found in another camera. However, this assumption is not guaranteed to be correct. In this paper, we propose a Camera-Invariant Meta-Learning Network (CIMN) for SCT re-ID. CIMN assumes that the camera-invariant feature representations should be robust to camera changes. To this end, we split the training data into meta-train set and meta-test set based on camera IDs and perform a cross-camera simulation via meta-learning strategy, aiming to enforce the representations learned from the meta-train set to be robust to the meta-test set. With the cross-camera simulation, CIMN can learn camera-invariant and identity-discriminative representations even there are no CCSP data. However, this simulation also causes the separation of the meta-train set and the meta-test set, which ignores some beneficial relations between them. Thus, we introduce three losses: meta triplet loss, meta classification loss, and meta camera alignment loss, to leverage the ignored relations. The experiment results demonstrate that our method achieves comparable performance with and without CCSP data, and outperforms the state-of-the-art methods on SCT re-ID benchmarks. In addition, it is also effective in improving the domain generalization ability of the model.
Abstract:Multi-Source-Free Unsupervised Domain Adaptation (MSFDA) aims to transfer knowledge from multiple well-labeled source domains to an unlabeled target domain, using source models instead of source data. Existing MSFDA methods limited that each source domain provides only a single model, with a uniform structure. This paper introduces a new MSFDA setting: Model-Agnostic Multi-Source-Free Unsupervised Domain Adaptation (MMDA), allowing diverse source models with varying architectures, without quantitative restrictions. While MMDA holds promising potential, incorporating numerous source models poses a high risk of including undesired models, which highlights the source model selection problem. To address it, we first provide a theoretical analysis of this problem. We reveal two fundamental selection principles: transferability principle and diversity principle, and introduce a selection algorithm to integrate them. Then, considering the measure of transferability is challenging, we propose a novel Source-Free Unsupervised Transferability Estimation (SUTE). This novel formulation enables the assessment and comparison of transferability across multiple source models with different architectures in the context of domain shift, without requiring access to any target labels or source data. Based on the above, we introduce a new framework to address MMDA. Specifically, we first conduct source model selection based on the proposed selection principles. Subsequently, we design two modules to aggregate knowledge from included models and recycle useful knowledge from excluded models. These modules enable us to leverage source knowledge efficiently and effectively, thereby supporting us in learning a discriminative target model via adaptation. We validate the effectiveness of our method through numerous experimental results, and demonstrate that our approach achieves state-of-the-art performance.
Abstract:Source-free unsupervised domain adaptation (SFUDA) aims to learn a target domain model using unlabeled target data and the knowledge of a well-trained source domain model. Most previous SFUDA works focus on inferring semantics of target data based on the source knowledge. Without measuring the transferability of the source knowledge, these methods insufficiently exploit the source knowledge, and fail to identify the reliability of the inferred target semantics. However, existing transferability measurements require either source data or target labels, which are infeasible in SFUDA. To this end, firstly, we propose a novel Uncertainty-induced Transferability Representation (UTR), which leverages uncertainty as the tool to analyse the channel-wise transferability of the source encoder in the absence of the source data and target labels. The domain-level UTR unravels how transferable the encoder channels are to the target domain and the instance-level UTR characterizes the reliability of the inferred target semantics. Secondly, based on the UTR, we propose a novel Calibrated Adaption Framework (CAF) for SFUDA, including i)the source knowledge calibration module that guides the target model to learn the transferable source knowledge and discard the non-transferable one, and ii)the target semantics calibration module that calibrates the unreliable semantics. With the help of the calibrated source knowledge and the target semantics, the model adapts to the target domain safely and ultimately better. We verified the effectiveness of our method using experimental results and demonstrated that the proposed method achieves state-of-the-art performances on the three SFUDA benchmarks. Code is available at https://github.com/SPIresearch/UTR.