Abstract:Considering the problem of nonlinear and non-gaussian filtering of the graph signal, in this paper, a robust square root unscented Kalman filter based on graph signal processing is proposed. The algorithm uses a graph topology to generate measurements and an unscented transformation is used to obtain the priori state estimates. In addition, in order to enhance the numerical stability of the unscented Kalman filter, the algorithm combines the double square root decomposition method to update the covariance matrix in the graph frequency domain. Furthermore, to handle the non-Gaussian noise problem in the state estimation process, an error augmentation model is constructed in the graph frequency domain by unifying the measurement error and state error, which utilizes the Laplace matrix of the graph to effectively reduce the cumulative error at each vertex. Then the general robust cost function is adopted as the optimal criterion to deal with the error, which has more parameter options so that effectively suppresses the problems of random outliers and abnormal measurement values in the state estimation process. Finally, the convergence of the error of the proposed algorithm is firstly verified theoretically, and then the robustness of the proposed algorithm is verified by experimental simulation.
Abstract:Although the known maximum total generalized correntropy (MTGC) and generalized maximum blakezisserman total correntropy (GMBZTC) algorithms can maintain good performance under the errors-in-variables (EIV) model disrupted by generalized Gaussian noise, their requirement for manual ad-justment of parameters is excessive, greatly increasing the practical difficulty of use. To solve this problem, the total arctangent based on logical distance metric (TACLDM) algo-rithm is proposed by utilizing the advantage of few parameters in logical distance metric (LDM) theory and the convergence behavior is improved by the arctangent function. Compared with other competing algorithms, the TACLDM algorithm not only has fewer parameters, but also has better robustness to generalized Gaussian noise and significantly reduces the steady-state error. Furthermore, the analysis of the algorithm in the generalized Gaussian noise environment is analyzed in detail in this paper. Finally, computer simulations demonstrate the outstanding performance of the TACLDM algorithm and the rigorous theoretical deduction in this paper.
Abstract:Robust semantic segmentation of VHR remote sensing images from UAV sensors is critical for earth observation, land use, land cover or mapping applications. Several factors such as shadows, weather disruption and camera shakes making this problem highly challenging, especially only using RGB images. In this paper, we propose the use of multi-modality data including NIR, RGB and DSM to increase robustness of segmentation in blurred or partially damaged VHR remote sensing images. By proposing a cascaded dense encoder-decoder network and the SELayer based fusion and assembling techniques, the proposed RobustDenseNet achieves steady performance when the image quality is decreasing, compared with the state-of-the-art semantic segmentation model.