Abstract:The potential for higher-resolution image generation using pretrained diffusion models is immense, yet these models often struggle with issues of object repetition and structural artifacts especially when scaling to 4K resolution and higher. We figure out that the problem is caused by that, a single prompt for the generation of multiple scales provides insufficient efficacy. In response, we propose HiPrompt, a new tuning-free solution that tackles the above problems by introducing hierarchical prompts. The hierarchical prompts offer both global and local guidance. Specifically, the global guidance comes from the user input that describes the overall content, while the local guidance utilizes patch-wise descriptions from MLLMs to elaborately guide the regional structure and texture generation. Furthermore, during the inverse denoising process, the generated noise is decomposed into low- and high-frequency spatial components. These components are conditioned on multiple prompt levels, including detailed patch-wise descriptions and broader image-level prompts, facilitating prompt-guided denoising under hierarchical semantic guidance. It further allows the generation to focus more on local spatial regions and ensures the generated images maintain coherent local and global semantics, structures, and textures with high definition. Extensive experiments demonstrate that HiPrompt outperforms state-of-the-art works in higher-resolution image generation, significantly reducing object repetition and enhancing structural quality.
Abstract:The rapid advancement of large language models (LLMs) has led to the rise of LLM-based agents. Recent research shows that multi-agent systems (MAS), where each agent plays a specific role, can outperform individual LLMs. However, configuring an MAS for a task remains challenging, with performance only observable post-execution. Inspired by scaling laws in LLM development, we investigate whether MAS performance can be predicted beforehand. We introduce AgentMonitor, a framework that integrates at the agent level to capture inputs and outputs, transforming them into statistics for training a regression model to predict task performance. Additionally, it can further apply real-time corrections to address security risks posed by malicious agents, mitigating negative impacts and enhancing MAS security. Experiments demonstrate that an XGBoost model achieves a Spearman correlation of 0.89 in-domain and 0.58 in more challenging scenarios. Furthermore, using AgentMonitor reduces harmful content by 6.2% and increases helpful content by 1.8% on average, enhancing safety and reliability. Code is available at \url{https://github.com/chanchimin/AgentMonitor}.
Abstract:Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses. This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios. To tackle these challenges, Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process, thus leveraging non-parametric knowledge alongside LLMs' in-context learning abilities. However, existing RAG implementations primarily focus on initial input for context retrieval, overlooking the nuances of ambiguous or complex queries that necessitate further clarification or decomposition for accurate responses. To this end, we propose learning to Refine Query for Retrieval Augmented Generation (RQ-RAG) in this paper, endeavoring to enhance the model by equipping it with capabilities for explicit rewriting, decomposition, and disambiguation. Our experimental results indicate that our method, when applied to a 7B Llama2 model, surpasses the previous state-of-the-art (SOTA) by an average of 1.9\% across three single-hop QA datasets, and also demonstrates enhanced performance in handling complex, multi-hop QA datasets. Our code is available at https://github.com/chanchimin/RQ-RAG.
Abstract:Autonomous agents empowered by Large Language Models (LLMs) have undergone significant improvements, enabling them to generalize across a broad spectrum of tasks. However, in real-world scenarios, cooperation among individuals is often required to enhance the efficiency and effectiveness of task accomplishment. Hence, inspired by human group dynamics, we propose a multi-agent framework \framework that can collaboratively and dynamically adjust its composition as a greater-than-the-sum-of-its-parts system. Our experiments demonstrate that \framework framework can effectively deploy multi-agent groups that outperform a single agent. Furthermore, we delve into the emergence of social behaviors among individual agents within a group during collaborative task accomplishment. In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups. Our codes for \framework will soon be released at \url{https://github.com/OpenBMB/AgentVerse}.
Abstract:Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality. Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies. The multi-agent-based approach enables a group of LLMs to synergize with an array of intelligent counterparts, harnessing their distinct capabilities and expertise to enhance efficiency and effectiveness in handling intricate tasks. In this paper, we construct a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models on open-ended questions and traditional natural language generation (NLG) tasks. Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments. Our code is available at https://github.com/chanchimin/ChatEval.
Abstract:Parameter-efficient tuning (PET) methods can effectively drive extremely large pre-trained language models (PLMs) by only training minimal parameters. Different PET methods utilize different manually designed modules. In a small PLM, there are usually noticeable performance differences among PET methods. Nevertheless, when a PLM's scale grows up to tens of billions of parameters, all PET methods achieve almost the same performance and even perform on par with the full-parameter fine-tuning method. Hence, we hypothesize that model scaling can mitigate the design differences (the module structures and the number of trainable parameters) among PET methods. To study this hypothesis, we introduce a more flexible PET method - arbitrary PET (APET) method - to be compatible with arbitrary module structures and any number of trainable parameters. Then, we experiment on $11$ NLP tasks of $5$ types and $2$ representative PLMs. From our investigations, we find that the model scaling (1) mitigates the effects of the arbitrary module structure on the performance of tuning methods, and (2) enables the tuning methods to optimize fewer parameters to achieve the full-parameter fine-tuning performance. Intriguingly, we also observe that all tuning methods require almost the same number of trainable parameters to drive PLMs. We discuss this phenomenon and the above two findings collectively from optimization perspectives to fathom the mechanisms behind them. These conclusions not only demonstrate the positive impact of model scaling on tuning methods but disclose its mechanisms, which help us design more effective and efficient tuning methods on larger-scale PLMs.
Abstract:Large-scale pre-trained models (PTMs) have been widely used in document-oriented NLP tasks, such as question answering. However, the encoding-task coupling requirement results in the repeated encoding of the same documents for different tasks and queries, which is highly computationally inefficient. To this end, we target to decouple document encoding from downstream tasks, and propose to represent each document as a plug-and-play document module, i.e., a document plugin, for PTMs (PlugD). By inserting document plugins into the backbone PTM for downstream tasks, we can encode a document one time to handle multiple tasks, which is more efficient than conventional encoding-task coupling methods that simultaneously encode documents and input queries using task-specific encoders. Extensive experiments on 8 datasets of 4 typical NLP tasks show that PlugD enables models to encode documents once and for all across different scenarios. Especially, PlugD can save $69\%$ computational costs while achieving comparable performance to state-of-the-art encoding-task coupling methods. Additionally, we show that PlugD can serve as an effective post-processing way to inject knowledge into task-specific models, improving model performance without any additional model training.
Abstract:Despite the success, the process of fine-tuning large-scale PLMs brings prohibitive adaptation costs. In fact, fine-tuning all the parameters of a colossal model and retaining separate instances for different tasks are practically infeasible. This necessitates a new branch of research focusing on the parameter-efficient adaptation of PLMs, dubbed as delta tuning in this paper. In contrast with the standard fine-tuning, delta tuning only fine-tunes a small portion of the model parameters while keeping the rest untouched, largely reducing both the computation and storage costs. Recent studies have demonstrated that a series of delta tuning methods with distinct tuned parameter selection could achieve performance on a par with full-parameter fine-tuning, suggesting a new promising way of stimulating large-scale PLMs. In this paper, we first formally describe the problem of delta tuning and then comprehensively review recent delta tuning approaches. We also propose a unified categorization criterion that divide existing delta tuning methods into three groups: addition-based, specification-based, and reparameterization-based methods. Though initially proposed as an efficient method to steer large models, we believe that some of the fascinating evidence discovered along with delta tuning could help further reveal the mechanisms of PLMs and even deep neural networks. To this end, we discuss the theoretical principles underlying the effectiveness of delta tuning and propose frameworks to interpret delta tuning from the perspective of optimization and optimal control, respectively. Furthermore, we provide a holistic empirical study of representative methods, where results on over 100 NLP tasks demonstrate a comprehensive performance comparison of different approaches. The experimental results also cover the analysis of combinatorial, scaling and transferable properties of delta tuning.
Abstract:Prompt tuning (PT) is a promising parameter-efficient method to utilize extremely large pre-trained language models (PLMs), which could achieve comparable performance to full-parameter fine-tuning by only tuning a few soft prompts. However, compared to fine-tuning, PT empirically requires much more training steps. To explore whether we can improve the efficiency of PT by reusing trained soft prompts and sharing learned knowledge, we empirically investigate the transferability of soft prompts across different tasks and models. In cross-task transfer, we find that trained soft prompts can well transfer to similar tasks and initialize PT for them to accelerate training and improve performance. Moreover, to explore what factors influence prompts' transferability across tasks, we investigate how to measure the prompt similarity and find that the overlapping rate of activated neurons highly correlates to the transferability. In cross-model transfer, we explore how to project the prompts of a PLM to another PLM and successfully train a kind of projector which can achieve non-trivial transfer performance on similar tasks. However, initializing PT with the projected prompts does not work well, which may be caused by optimization preferences and PLMs' high redundancy. Our findings show that improving PT with knowledge transfer is possible and promising, while prompts' cross-task transferability is generally better than the cross-model transferability.