East China Normal University
Abstract:Understanding objects in 3D at the part level is essential for humans and robots to navigate and interact with the environment. Current datasets for part-level 3D object understanding encompass a limited range of categories. For instance, the ShapeNet-Part and PartNet datasets only include 16, and 24 object categories respectively. The 3DCoMPaT dataset, specifically designed for compositional understanding of parts and materials, contains only 42 object categories. To foster richer and fine-grained part-level 3D understanding, we introduce 3DCoMPaT200, a large-scale dataset tailored for compositional understanding of object parts and materials, with 200 object categories with $\approx$5 times larger object vocabulary compared to 3DCoMPaT and $\approx$ 4 times larger part categories. Concretely, 3DCoMPaT200 significantly expands upon 3DCoMPaT, featuring 1,031 fine-grained part categories and 293 distinct material classes for compositional application to 3D object parts. Additionally, to address the complexities of compositional 3D modeling, we propose a novel task of Compositional Part Shape Retrieval using ULIP to provide a strong 3D foundational model for 3D Compositional Understanding. This method evaluates the model shape retrieval performance given one, three, or six parts described in text format. These results show that the model's performance improves with an increasing number of style compositions, highlighting the critical role of the compositional dataset. Such results underscore the dataset's effectiveness in enhancing models' capability to understand complex 3D shapes from a compositional perspective. Code and Data can be found at http://github.com/3DCoMPaT200/3DCoMPaT200
Abstract:With the rapid advancements in large language model (LLM) technology and the emergence of bioinformatics-specific language models (BioLMs), there is a growing need for a comprehensive analysis of the current landscape, computational characteristics, and diverse applications. This survey aims to address this need by providing a thorough review of BioLMs, focusing on their evolution, classification, and distinguishing features, alongside a detailed examination of training methodologies, datasets, and evaluation frameworks. We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development, highlighting their impact and transformative potential in bioinformatics. We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities. Finally, we highlight emerging trends and future directions, offering valuable insights to guide researchers and clinicians toward advancing BioLMs for increasingly sophisticated biological and clinical applications.
Abstract:Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.
Abstract:While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
Abstract:In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition. The challenge lies in the sparse sampling of projections, which introduces severe streaking artifacts and compromises image quality. This paper introduces a novel framework leveraging spatiotemporal Gaussian representation for 4D-CBCT reconstruction from sparse projections, achieving a balance between streak artifact reduction, dynamic motion preservation, and fine detail restoration. Each Gaussian is characterized by its 3D position, covariance, rotation, and density. Two-dimensional X-ray projection images can be rendered from the Gaussian point cloud representation via X-ray rasterization. The properties of each Gaussian were optimized by minimizing the discrepancy between the measured projections and the rendered X-ray projections. A Gaussian deformation network is jointly optimized to deform these Gaussian properties to obtain a 4D Gaussian representation for dynamic CBCT scene modeling. The final 4D-CBCT images are reconstructed by voxelizing the 4D Gaussians, achieving a high-quality representation that preserves both motion dynamics and spatial detail. The code and reconstruction results can be found at https://github.com/fuyabo/4DGS_for_4DCBCT/tree/main
Abstract:With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
Abstract:Recently, animating portrait images using audio input is a popular task. Creating lifelike talking head videos requires flexible and natural movements, including facial and head dynamics, camera motion, realistic light and shadow effects. Existing methods struggle to offer comprehensive, multifaceted control over these aspects. In this work, we introduce UniAvatar, a designed method that provides extensive control over a wide range of motion and illumination conditions. Specifically, we use the FLAME model to render all motion information onto a single image, maintaining the integrity of 3D motion details while enabling fine-grained, pixel-level control. Beyond motion, this approach also allows for comprehensive global illumination control. We design independent modules to manage both 3D motion and illumination, permitting separate and combined control. Extensive experiments demonstrate that our method outperforms others in both broad-range motion control and lighting control. Additionally, to enhance the diversity of motion and environmental contexts in current datasets, we collect and plan to publicly release two datasets, DH-FaceDrasMvVid-100 and DH-FaceReliVid-200, which capture significant head movements during speech and various lighting scenarios.
Abstract:The rapid growth of social media platforms has raised significant concerns regarding online content toxicity. When Large Language Models (LLMs) are used for toxicity detection, two key challenges emerge: 1) the absence of domain-specific toxic knowledge leads to false negatives; 2) the excessive sensitivity of LLMs to toxic speech results in false positives, limiting freedom of speech. To address these issues, we propose a novel method called MetaTox, leveraging graph search on a meta-toxic knowledge graph to enhance hatred and toxicity detection. First, we construct a comprehensive meta-toxic knowledge graph by utilizing LLMs to extract toxic information through a three-step pipeline, with toxic benchmark datasets serving as corpora. Second, we query the graph via retrieval and ranking processes to supplement accurate, relevant toxic knowledge. Extensive experiments and in-depth case studies across multiple datasets demonstrate that our MetaTox significantly decreases the false positive rate while boosting overall toxicity detection performance. Our code will be available soon.
Abstract:Recently, significant advances have been made in Video Large Language Models (Video LLMs) in both academia and industry. However, methods to evaluate and benchmark the performance of different Video LLMs, especially their fine-grained, temporal visual capabilities, remain very limited. On one hand, current benchmarks use relatively simple videos (e.g., subtitled movie clips) where the model can understand the entire video by processing just a few frames. On the other hand, their datasets lack diversity in task format, comprising only QA or multi-choice QA, which overlooks the models' capacity for generating in-depth and precise texts. Sports videos, which feature intricate visual information, sequential events, and emotionally charged commentary, present a critical challenge for Video LLMs, making sports commentary an ideal benchmarking task. Inspired by these challenges, we propose a novel task: sports video commentary generation, developed $\textbf{SCBench}$ for Video LLMs. To construct such a benchmark, we introduce (1) $\textbf{SCORES}$, a six-dimensional metric specifically designed for our task, upon which we propose a GPT-based evaluation method, and (2) $\textbf{CommentarySet}$, a dataset consisting of 5,775 annotated video clips and ground-truth labels tailored to our metric. Based on SCBench, we conduct comprehensive evaluations on multiple Video LLMs (e.g. VILA, Video-LLaVA, etc.) and chain-of-thought baseline methods. Our results found that InternVL-Chat-2 achieves the best performance with 5.44, surpassing the second-best by 1.04. Our work provides a fresh perspective for future research, aiming to enhance models' overall capabilities in complex visual understanding tasks. Our dataset will be released soon.
Abstract:In two-time-scale stochastic approximation (SA), two iterates are updated at different rates, governed by distinct step sizes, with each update influencing the other. Previous studies have demonstrated that the convergence rates of the error terms for these updates depend solely on their respective step sizes, a property known as decoupled convergence. However, a functional version of this decoupled convergence has not been explored. Our work fills this gap by establishing decoupled functional central limit theorems for two-time-scale SA, offering a more precise characterization of its asymptotic behavior. To achieve these results, we leverage the martingale problem approach and establish tightness as a crucial intermediate step. Furthermore, to address the interdependence between different time scales, we introduce an innovative auxiliary sequence to eliminate the primary influence of the fast-time-scale update on the slow-time-scale update.