East China Normal University
Abstract:Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author's thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors.
Abstract:The convergence behavior of Stochastic Gradient Descent (SGD) crucially depends on the stepsize configuration. When using a constant stepsize, the SGD iterates form a Markov chain, enjoying fast convergence during the initial transient phase. However, when reaching stationarity, the iterates oscillate around the optimum without making further progress. In this paper, we study the convergence diagnostics for SGD with constant stepsize, aiming to develop an effective dynamic stepsize scheme. We propose a novel coupling-based convergence diagnostic procedure, which monitors the distance of two coupled SGD iterates for stationarity detection. Our diagnostic statistic is simple and is shown to track the transition from transience stationarity theoretically. We conduct extensive numerical experiments and compare our method against various existing approaches. Our proposed coupling-based stepsize scheme is observed to achieve superior performance across a diverse set of convex and non-convex problems. Moreover, our results demonstrate the robustness of our approach to a wide range of hyperparameters.
Abstract:Efficient image tokenization with high compression ratios remains a critical challenge for training generative models. We present SoftVQ-VAE, a continuous image tokenizer that leverages soft categorical posteriors to aggregate multiple codewords into each latent token, substantially increasing the representation capacity of the latent space. When applied to Transformer-based architectures, our approach compresses 256x256 and 512x512 images using as few as 32 or 64 1-dimensional tokens. Not only does SoftVQ-VAE show consistent and high-quality reconstruction, more importantly, it also achieves state-of-the-art and significantly faster image generation results across different denoising-based generative models. Remarkably, SoftVQ-VAE improves inference throughput by up to 18x for generating 256x256 images and 55x for 512x512 images while achieving competitive FID scores of 1.78 and 2.21 for SiT-XL. It also improves the training efficiency of the generative models by reducing the number of training iterations by 2.3x while maintaining comparable performance. With its fully-differentiable design and semantic-rich latent space, our experiment demonstrates that SoftVQ-VQE achieves efficient tokenization without compromising generation quality, paving the way for more efficient generative models. Code and model are released.
Abstract:Text-to-video generation has evolved rapidly in recent years, delivering remarkable results. Training typically relies on video-caption paired data, which plays a crucial role in enhancing generation performance. However, current video captions often suffer from insufficient details, hallucinations and imprecise motion depiction, affecting the fidelity and consistency of generated videos. In this work, we propose a novel instance-aware structured caption framework, termed InstanceCap, to achieve instance-level and fine-grained video caption for the first time. Based on this scheme, we design an auxiliary models cluster to convert original video into instances to enhance instance fidelity. Video instances are further used to refine dense prompts into structured phrases, achieving concise yet precise descriptions. Furthermore, a 22K InstanceVid dataset is curated for training, and an enhancement pipeline that tailored to InstanceCap structure is proposed for inference. Experimental results demonstrate that our proposed InstanceCap significantly outperform previous models, ensuring high fidelity between captions and videos while reducing hallucinations.
Abstract:Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text prompt inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-embedded Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple universal attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. To finalize the attributes for downstream tasks, we propose a differentiable attribute search method that learns to identify representative and suitable attributes from a candidate pool summarized by a large language model. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing prompt format of textual-based methods, offering general improvements at a negligible computational cost. Extensive experiments on 11 datasets demonstrate the effectiveness of our method.
Abstract:As information becomes more accessible, user-generated videos are increasing in length, placing a burden on viewers to sift through vast content for valuable insights. This trend underscores the need for an algorithm to extract key video information efficiently. Despite significant advancements in highlight detection, moment retrieval, and video summarization, current approaches primarily focus on selecting specific time intervals, often overlooking the relevance between segments and the potential for segment arranging. In this paper, we introduce a novel task called Video Trimming (VT), which focuses on detecting wasted footage, selecting valuable segments, and composing them into a final video with a coherent story. To address this task, we propose Agent-based Video Trimming (AVT), structured into three phases: Video Structuring, Clip Filtering, and Story Composition. Specifically, we employ a Video Captioning Agent to convert video slices into structured textual descriptions, a Filtering Module to dynamically discard low-quality footage based on the structured information of each clip, and a Video Arrangement Agent to select and compile valid clips into a coherent final narrative. For evaluation, we develop a Video Evaluation Agent to assess trimmed videos, conducting assessments in parallel with human evaluations. Additionally, we curate a new benchmark dataset for video trimming using raw user videos from the internet. As a result, AVT received more favorable evaluations in user studies and demonstrated superior mAP and precision on the YouTube Highlights, TVSum, and our own dataset for the highlight detection task. The code and models are available at https://ylingfeng.github.io/AVT.
Abstract:Modern AI assistants have made significant progress in natural language understanding and API/tool integration, with emerging efforts to incorporate diverse interfaces (such as Web interfaces) for enhanced scalability and functionality. However, current approaches that heavily rely on repeated LLM-driven HTML parsing are computationally expensive and error-prone, particularly when handling dynamic web interfaces and multi-step tasks. To overcome these challenges, we introduce PAFFA (Premeditated Actions For Fast Agents), a framework designed to enhance web interaction capabilities through an Action API Library of reusable, verified browser interaction functions. By pre-computing interaction patterns and employing two core methodologies - "Dist-Map" for task-agnostic element distillation and "Unravel" for incremental page-wise exploration - PAFFA reduces inference calls by 87% while maintaining robust performance even as website structures evolve. This framework accelerates multi-page task execution and offers a scalable solution to advance autonomous web agent research.
Abstract:This study introduces "RadCouncil," a multi-agent Large Language Model (LLM) framework designed to enhance the generation of impressions in radiology reports from the finding section. RadCouncil comprises three specialized agents: 1) a "Retrieval" Agent that identifies and retrieves similar reports from a vector database, 2) a "Radiologist" Agent that generates impressions based on the finding section of the given report plus the exemplar reports retrieved by the Retrieval Agent, and 3) a "Reviewer" Agent that evaluates the generated impressions and provides feedback. The performance of RadCouncil was evaluated using both quantitative metrics (BLEU, ROUGE, BERTScore) and qualitative criteria assessed by GPT-4, using chest X-ray as a case study. Experiment results show improvements in RadCouncil over the single-agent approach across multiple dimensions, including diagnostic accuracy, stylistic concordance, and clarity. This study highlights the potential of utilizing multiple interacting LLM agents, each with a dedicated task, to enhance performance in specialized medical tasks and the development of more robust and adaptable healthcare AI solutions.
Abstract:Community detection is the task of clustering objects based on their pairwise relationships. Most of the model-based community detection methods, such as the stochastic block model and its variants, are designed for networks with binary (yes/no) edges. In many practical scenarios, edges often possess continuous weights, spanning positive and negative values, which reflect varying levels of connectivity. To address this challenge, we introduce the heterogeneous block covariance model (HBCM) that defines a community structure within the covariance matrix, where edges have signed and continuous weights. Furthermore, it takes into account the heterogeneity of objects when forming connections with other objects within a community. A novel variational expectation-maximization algorithm is proposed to estimate the group membership. The HBCM provides provable consistent estimates of memberships, and its promising performance is observed in numerical simulations with different setups. The model is applied to a single-cell RNA-seq dataset of a mouse embryo and a stock price dataset. Supplementary materials for this article are available online.
Abstract:Detecting euphemisms is essential for content security on various social media platforms, but existing methods designed for detecting euphemisms are ineffective in impromptu euphemisms. In this work, we make a first attempt to an exploration of impromptu euphemism detection and introduce the Impromptu Cybercrime Euphemisms Detection (ICED) dataset. Moreover, we propose a detection framework tailored to this problem, which employs context augmentation modeling and multi-round iterative training. Our detection framework mainly consists of a coarse-grained and a fine-grained classification model. The coarse-grained classification model removes most of the harmless content in the corpus to be detected. The fine-grained model, impromptu euphemisms detector, integrates context augmentation and multi-round iterations training to better predicts the actual meaning of a masked token. In addition, we leverage ChatGPT to evaluate the mode's capability. Experimental results demonstrate that our approach achieves a remarkable 76-fold improvement compared to the previous state-of-the-art euphemism detector.