Abstract:Gaze estimation is pivotal in human scene comprehension tasks, particularly in medical diagnostic analysis. Eye-tracking technology facilitates the recording of physicians' ocular movements during image interpretation, thereby elucidating their visual attention patterns and information-processing strategies. In this paper, we initially define the context-aware gaze estimation problem in medical radiology report settings. To understand the attention allocation and cognitive behavior of radiologists during the medical image interpretation process, we propose a context-aware Gaze EstiMation (GEM) network that utilizes eye gaze data collected from radiologists to simulate their visual search behavior patterns throughout the image interpretation process. It consists of a context-awareness module, visual behavior graph construction, and visual behavior matching. Within the context-awareness module, we achieve intricate multimodal registration by establishing connections between medical reports and images. Subsequently, for a more accurate simulation of genuine visual search behavior patterns, we introduce a visual behavior graph structure, capturing such behavior through high-order relationships (edges) between gaze points (nodes). To maintain the authenticity of visual behavior, we devise a visual behavior-matching approach, adjusting the high-order relationships between them by matching the graph constructed from real and estimated gaze points. Extensive experiments on four publicly available datasets demonstrate the superiority of GEM over existing methods and its strong generalizability, which also provides a new direction for the effective utilization of diverse modalities in medical image interpretation and enhances the interpretability of models in the field of medical imaging. https://github.com/Tiger-SN/GEM
Abstract:Multi-modal large language models (MLLMs) have been given free rein to explore exciting medical applications with a primary focus on radiology report generation. Nevertheless, the preliminary success in 2D radiology captioning is incompetent to reflect the real-world diagnostic challenge in the volumetric 3D anatomy. To mitigate three crucial limitation aspects in the existing literature, including (1) data complexity, (2) model capacity, and (3) evaluation metric fidelity, we collected an 18,885 text-scan pairs 3D-BrainCT dataset and applied clinical visual instruction tuning (CVIT) to train BrainGPT models to generate radiology-adherent 3D brain CT reports. Statistically, our BrainGPT scored BLEU-1 = 44.35, BLEU-4 = 20.38, METEOR = 30.13, ROUGE-L = 47.6, and CIDEr-R = 211.77 during internal testing and demonstrated an accuracy of 0.91 in captioning midline shifts on the external validation CQ500 dataset. By further inspecting the captioned report, we reported that the traditional metrics appeared to measure only the surface text similarity and failed to gauge the information density of the diagnostic purpose. To close this gap, we proposed a novel Feature-Oriented Radiology Task Evaluation (FORTE) to estimate the report's clinical relevance (lesion feature and landmarks). Notably, the BrainGPT model scored an average FORTE F1-score of 0.71 (degree=0.661; landmark=0.706; feature=0.693; impression=0.779). To demonstrate that BrainGPT models possess objective readiness to generate human-like radiology reports, we conducted a Turing test that enrolled 11 physician evaluators, and around 74% of the BrainGPT-generated captions were indistinguishable from those written by humans. Our work embodies a holistic framework that showcased the first-hand experience of curating a 3D brain CT dataset, fine-tuning anatomy-sensible language models, and proposing robust radiology evaluation metrics.
Abstract:Pathology image are essential for accurately interpreting lesion cells in cytopathology screening, but acquiring high-resolution digital slides requires specialized equipment and long scanning times. Though super-resolution (SR) techniques can alleviate this problem, existing deep learning models recover pathology image in a black-box manner, which can lead to untruthful biological details and misdiagnosis. Additionally, current methods allocate the same computational resources to recover each pixel of pathology image, leading to the sub-optimal recovery issue due to the large variation of pathology image. In this paper, we propose the first hierarchical reinforcement learning framework named Spatial-Temporal hierARchical Reinforcement Learning (STAR-RL), mainly for addressing the aforementioned issues in pathology image super-resolution problem. We reformulate the SR problem as a Markov decision process of interpretable operations and adopt the hierarchical recovery mechanism in patch level, to avoid sub-optimal recovery. Specifically, the higher-level spatial manager is proposed to pick out the most corrupted patch for the lower-level patch worker. Moreover, the higher-level temporal manager is advanced to evaluate the selected patch and determine whether the optimization should be stopped earlier, thereby avoiding the over-processed problem. Under the guidance of spatial-temporal managers, the lower-level patch worker processes the selected patch with pixel-wise interpretable actions at each time step. Experimental results on medical images degraded by different kernels show the effectiveness of STAR-RL. Furthermore, STAR-RL validates the promotion in tumor diagnosis with a large margin and shows generalizability under various degradations. The source code is available at https://github.com/CUHK-AIM-Group/STAR-RL.
Abstract:In the fight against the COVID-19 pandemic, leveraging artificial intelligence to predict disease outcomes from chest radiographic images represents a significant scientific aim. The challenge, however, lies in the scarcity of large, labeled datasets with compatible tasks for training deep learning models without leading to overfitting. Addressing this issue, we introduce a novel multi-dataset multi-task training framework that predicts COVID-19 prognostic outcomes from chest X-rays (CXR) by integrating correlated datasets from disparate sources, distant from conventional multi-task learning approaches, which rely on datasets with multiple and correlated labeling schemes. Our framework hypothesizes that assessing severity scores enhances the model's ability to classify prognostic severity groups, thereby improving its robustness and predictive power. The proposed architecture comprises a deep convolutional network that receives inputs from two publicly available CXR datasets, AIforCOVID for severity prognostic prediction and BRIXIA for severity score assessment, and branches into task-specific fully connected output networks. Moreover, we propose a multi-task loss function, incorporating an indicator function, to exploit multi-dataset integration. The effectiveness and robustness of the proposed approach are demonstrated through significant performance improvements in prognosis classification tasks across 18 different convolutional neural network backbones in different evaluation strategies. This improvement is evident over single-task baselines and standard transfer learning strategies, supported by extensive statistical analysis, showing great application potential.
Abstract:In multi-modal frameworks, the alignment of cross-modal features presents a significant challenge. The predominant approach in multi-modal pre-training emphasizes either global or local alignment between modalities, utilizing extensive datasets. This bottom-up driven method often suffers from a lack of interpretability, a critical concern in radiology. Previous studies have integrated high-level labels in medical images or text, but these still rely on manual annotation, a costly and labor-intensive process. Our work introduces a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. This data, indicating radiologists' focus areas, naturally links chest X-rays to diagnostic texts. We propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of image and text features, aiming to reduce reliance on manual annotations and thus cut training costs. Our model demonstrates robust performance, outperforming other state-of-the-art methods in zero-shot classification and retrieval tasks. The incorporation of easily-obtained eye-gaze data during routine radiological diagnoses signifies a step towards minimizing manual annotation dependency. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal pre-training.
Abstract:Data scarcity and privacy concerns limit the availability of high-quality medical images for public use, which can be mitigated through medical image synthesis. However, current medical image synthesis methods often struggle to accurately capture the complexity of detailed anatomical structures and pathological conditions. To address these challenges, we propose a novel medical image synthesis model that leverages fine-grained image-text alignment and anatomy-pathology prompts to generate highly detailed and accurate synthetic medical images. Our method integrates advanced natural language processing techniques with image generative modeling, enabling precise alignment between descriptive text prompts and the synthesized images' anatomical and pathological details. The proposed approach consists of two key components: an anatomy-pathology prompting module and a fine-grained alignment-based synthesis module. The anatomy-pathology prompting module automatically generates descriptive prompts for high-quality medical images. To further synthesize high-quality medical images from the generated prompts, the fine-grained alignment-based synthesis module pre-defines a visual codebook for the radiology dataset and performs fine-grained alignment between the codebook and generated prompts to obtain key patches as visual clues, facilitating accurate image synthesis. We validate the superiority of our method through experiments on public chest X-ray datasets and demonstrate that our synthetic images preserve accurate semantic information, making them valuable for various medical applications.
Abstract:The significant breakthroughs of Medical Multi-Modal Large Language Models (Med-MLLMs) renovate modern healthcare with robust information synthesis and medical decision support. However, these models are often evaluated on benchmarks that are unsuitable for the Med-MLLMs due to the intricate nature of the real-world diagnostic frameworks, which encompass diverse medical specialties and involve complex clinical decisions. Moreover, these benchmarks are susceptible to data leakage, since Med-MLLMs are trained on large assemblies of publicly available data. Thus, an isolated and clinically representative benchmark is highly desirable for credible Med-MLLMs evaluation. To this end, we introduce Asclepius, a novel Med-MLLM benchmark that rigorously and comprehensively assesses model capability in terms of: distinct medical specialties (cardiovascular, gastroenterology, etc.) and different diagnostic capacities (perception, disease analysis, etc.). Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties, stratifying into 3 main categories and 8 sub-categories of clinical tasks, and exempting from train-validate contamination. We further provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists, providing insights into their competencies and limitations in various medical contexts. Our work not only advances the understanding of Med-MLLMs' capabilities but also sets a precedent for future evaluations and the safe deployment of these models in clinical environments. We launch and maintain a leaderboard for community assessment of Med-MLLM capabilities (https://asclepius-med.github.io/).
Abstract:To address these issues, we propose a novel Adaptive patch-word Matching (AdaMatch) model to correlate chest X-ray (CXR) image regions with words in medical reports and apply it to CXR-report generation to provide explainability for the generation process. AdaMatch exploits the fine-grained relation between adaptive patches and words to provide explanations of specific image regions with corresponding words. To capture the abnormal regions of varying sizes and positions, we introduce the Adaptive Patch extraction (AdaPatch) module to acquire the adaptive patches for these regions adaptively. In order to provide explicit explainability for CXR-report generation task, we propose an AdaMatch-based bidirectional large language model for Cyclic CXR-report generation (AdaMatch-Cyclic). It employs the AdaMatch to obtain the keywords for CXR images and `keypatches' for medical reports as hints to guide CXR-report generation. Extensive experiments on two publicly available CXR datasets prove the effectiveness of our method and its superior performance to existing methods.
Abstract:In implant prosthesis treatment, the design of surgical guide requires lots of manual labors and is prone to subjective variations. When deep learning based methods has started to be applied to address this problem, the space between teeth are various and some of them might present similar texture characteristic with the actual implant region. Both problems make a big challenge for the implant position prediction. In this paper, we develop a two-stream implant position regression framework (TSIPR), which consists of an implant region detector (IRD) and a multi-scale patch embedding regression network (MSPENet), to address this issue. For the training of IRD, we extend the original annotation to provide additional supervisory information, which contains much more rich characteristic and do not introduce extra labeling costs. A multi-scale patch embedding module is designed for the MSPENet to adaptively extract features from the images with various tooth spacing. The global-local feature interaction block is designed to build the encoder of MSPENet, which combines the transformer and convolution for enriched feature representation. During inference, the RoI mask extracted from the IRD is used to refine the prediction results of the MSPENet. Extensive experiments on a dental implant dataset through five-fold cross-validation demonstrated that the proposed TSIPR achieves superior performance than existing methods.
Abstract:Recent studies on multi-domain facial image translation have achieved impressive results. The existing methods generally provide a discriminator with an auxiliary classifier to impose domain translation. However, these methods neglect important information regarding domain distribution matching. To solve this problem, we propose a switch generative adversarial network (SwitchGAN) with a more adaptive discriminator structure and a matched generator to perform delicate image translation among multiple domains. A feature-switching operation is proposed to achieve feature selection and fusion in our conditional modules. We demonstrate the effectiveness of our model. Furthermore, we also introduce a new capability of our generator that represents attribute intensity control and extracts content information without tailored training. Experiments on the Morph, RaFD and CelebA databases visually and quantitatively show that our extended SwitchGAN (i.e., Gated SwitchGAN) can achieve better translation results than StarGAN, AttGAN and STGAN. The attribute classification accuracy achieved using the trained ResNet-18 model and the FID score obtained using the ImageNet pretrained Inception-v3 model also quantitatively demonstrate the superior performance of our models.