Abstract:As the commercial surgical guide design software usually does not support the export of implant position for pre-implantation data, existing methods have to scan the post-implantation data and map the implant to pre-implantation space to get the label of implant position for training. Such a process is time-consuming and heavily relies on the accuracy of registration algorithm. Moreover, not all hospitals have paired CBCT data, limitting the construction of multi-center dataset. Inspired by the way dentists determine the implant position based on the neighboring tooth texture, we found that even if the implant area is masked, it will not affect the determination of the implant position. Therefore, we propose to mask the implants in the post-implantation data so that any CBCT containing the implants can be used as training data. This paradigm enables us to discard the registration process and makes it possible to construct a large-scale multi-center implant dataset. On this basis, we proposes ImplantFairy, a comprehensive, publicly accessible dental implant dataset with voxel-level 3D annotations of 1622 CBCT data. Furthermore, according to the area variation characteristics of the tooth's spatial structure and the slope information of the implant, we designed a slope-aware implant position prediction network. Specifically, a neighboring distance perception (NDP) module is designed to adaptively extract tooth area variation features, and an implant slope prediction branch assists the network in learning more robust features through additional implant supervision information. Extensive experiments conducted on ImplantFairy and two public dataset demonstrate that the proposed RegFreeNet achieves the state-of-the-art performance.
Abstract:Glacial segmentation is essential for reconstructing past glacier dynamics and evaluating climate-driven landscape change. However, weak optical contrast and the limited availability of high-resolution DEMs hinder automated mapping. This study introduces the first large-scale optical-only moraine segmentation dataset, comprising 3,340 manually annotated high-resolution images from Google Earth covering glaciated regions of Sichuan and Yunnan, China. We develop MCD-Net, a lightweight baseline that integrates a MobileNetV2 encoder, a Convolutional Block Attention Module (CBAM), and a DeepLabV3+ decoder. Benchmarking against deeper backbones (ResNet152, Xception) shows that MCD-Net achieves 62.3% mean Intersection over Union (mIoU) and 72.8% Dice coefficient while reducing computational cost by more than 60%. Although ridge delineation remains constrained by sub-pixel width and spectral ambiguity, the results demonstrate that optical imagery alone can provide reliable moraine-body segmentation. The dataset and code are publicly available at https://github.com/Lyra-alpha/MCD-Net, establishing a reproducible benchmark for moraine-specific segmentation and offering a deployable baseline for high-altitude glacial monitoring.
Abstract:MLLMs (Multimodal Large Language Models) have showcased remarkable capabilities, but their performance in high-stakes, domain-specific scenarios like surgical settings, remains largely under-explored. To address this gap, we develop \textbf{EyePCR}, a large-scale benchmark for ophthalmic surgery analysis, grounded in structured clinical knowledge to evaluate cognition across \textit{Perception}, \textit{Comprehension} and \textit{Reasoning}. EyePCR offers a richly annotated corpus with more than 210k VQAs, which cover 1048 fine-grained attributes for multi-view perception, medical knowledge graph of more than 25k triplets for comprehension, and four clinically grounded reasoning tasks. The rich annotations facilitate in-depth cognitive analysis, simulating how surgeons perceive visual cues and combine them with domain knowledge to make decisions, thus greatly improving models' cognitive ability. In particular, \textbf{EyePCR-MLLM}, a domain-adapted variant of Qwen2.5-VL-7B, achieves the highest accuracy on MCQs for \textit{Perception} among compared models and outperforms open-source models in \textit{Comprehension} and \textit{Reasoning}, rivalling commercial models like GPT-4.1. EyePCR reveals the limitations of existing MLLMs in surgical cognition and lays the foundation for benchmarking and enhancing clinical reliability of surgical video understanding models.
Abstract:Dynamic Magnetic Resonance Imaging (MRI) exhibits transformation symmetries, including spatial rotation symmetry within individual frames and temporal symmetry along the time dimension. Explicit incorporation of these symmetry priors in the reconstruction model can significantly improve image quality, especially under aggressive undersampling scenarios. Recently, Equivariant convolutional neural network (ECNN) has shown great promise in exploiting spatial symmetry priors. However, existing ECNNs critically fail to model temporal symmetry, arguably the most universal and informative structural prior in dynamic MRI reconstruction. To tackle this issue, we propose a novel Deep Unrolling Network with Spatiotemporal Rotation Equivariance (DUN-SRE) for Dynamic MRI Reconstruction. The DUN-SRE establishes spatiotemporal equivariance through a (2+1)D equivariant convolutional architecture. In particular, it integrates both the data consistency and proximal mapping module into a unified deep unrolling framework. This architecture ensures rigorous propagation of spatiotemporal rotation symmetry constraints throughout the reconstruction process, enabling more physically accurate modeling of cardiac motion dynamics in cine MRI. In addition, a high-fidelity group filter parameterization mechanism is developed to maintain representation precision while enforcing symmetry constraints. Comprehensive experiments on Cardiac CINE MRI datasets demonstrate that DUN-SRE achieves state-of-the-art performance, particularly in preserving rotation-symmetric structures, offering strong generalization capability to a broad range of dynamic MRI reconstruction tasks.
Abstract:Face recognition using 3D point clouds is gaining growing interest, while raw point clouds often contain a significant amount of noise due to imperfect sensors. In this paper, an end-to-end 3D face recognition on a noisy point cloud is proposed, which synergistically integrates the denoising and recognition modules. Specifically, a Conditional Generative Adversarial Network on Three Orthogonal Planes (cGAN-TOP) is designed to effectively remove the noise in the point cloud, and recover the underlying features for subsequent recognition. A Linked Dynamic Graph Convolutional Neural Network (LDGCNN) is then adapted to recognize faces from the processed point cloud, which hierarchically links both the local point features and neighboring features of multiple scales. The proposed method is validated on the Bosphorus dataset. It significantly improves the recognition accuracy under all noise settings, with a maximum gain of 14.81%.
Abstract:Solving jigsaw puzzles has been extensively studied. While most existing models focus on solving either small-scale puzzles or puzzles with no gap between fragments, solving large-scale puzzles with gaps presents distinctive challenges in both image understanding and combinatorial optimization. To tackle these challenges, we propose a framework of Evolutionary Reinforcement Learning with Multi-head Puzzle Perception (ERL-MPP) to derive a better set of swapping actions for solving the puzzles. Specifically, to tackle the challenges of perceiving the puzzle with gaps, a Multi-head Puzzle Perception Network (MPPN) with a shared encoder is designed, where multiple puzzlet heads comprehensively perceive the local assembly status, and a discriminator head provides a global assessment of the puzzle. To explore the large swapping action space efficiently, an Evolutionary Reinforcement Learning (EvoRL) agent is designed, where an actor recommends a set of suitable swapping actions from a large action space based on the perceived puzzle status, a critic updates the actor using the estimated rewards and the puzzle status, and an evaluator coupled with evolutionary strategies evolves the actions aligning with the historical assembly experience. The proposed ERL-MPP is comprehensively evaluated on the JPLEG-5 dataset with large gaps and the MIT dataset with large-scale puzzles. It significantly outperforms all state-of-the-art models on both datasets.
Abstract:Recent motion-aware large language models have demonstrated promising potential in unifying motion comprehension and generation. However, existing approaches primarily focus on coarse-grained motion-text modeling, where text describes the overall semantics of an entire motion sequence in just a few words. This limits their ability to handle fine-grained motion-relevant tasks, such as understanding and controlling the movements of specific body parts. To overcome this limitation, we pioneer MG-MotionLLM, a unified motion-language model for multi-granular motion comprehension and generation. We further introduce a comprehensive multi-granularity training scheme by incorporating a set of novel auxiliary tasks, such as localizing temporal boundaries of motion segments via detailed text as well as motion detailed captioning, to facilitate mutual reinforcement for motion-text modeling across various levels of granularity. Extensive experiments show that our MG-MotionLLM achieves superior performance on classical text-to-motion and motion-to-text tasks, and exhibits potential in novel fine-grained motion comprehension and editing tasks. Project page: CVI-SZU/MG-MotionLLM
Abstract:Small lesions play a critical role in early disease diagnosis and intervention of severe infections. Popular models often face challenges in segmenting small lesions, as it occupies only a minor portion of an image, while down\_sampling operations may inevitably lose focus on local features of small lesions. To tackle the challenges, we propose a {\bf S}mall-{\bf S}ize-{\bf S}ensitive {\bf Mamba} ({\bf S$^3$-Mamba}), which promotes the sensitivity to small lesions across three dimensions: channel, spatial, and training strategy. Specifically, an Enhanced Visual State Space block is designed to focus on small lesions through multiple residual connections to preserve local features, and selectively amplify important details while suppressing irrelevant ones through channel-wise attention. A Tensor-based Cross-feature Multi-scale Attention is designed to integrate input image features and intermediate-layer features with edge features and exploit the attentive support of features across multiple scales, thereby retaining spatial details of small lesions at various granularities. Finally, we introduce a novel regularized curriculum learning to automatically assess lesion size and sample difficulty, and gradually focus from easy samples to hard ones like small lesions. Extensive experiments on three medical image segmentation datasets show the superiority of our S$^3$-Mamba, especially in segmenting small lesions. Our code is available at https://github.com/ErinWang2023/S3-Mamba.
Abstract:Dynamic MR images possess various transformation symmetries,including the rotation symmetry of local features within the image and along the temporal dimension. Utilizing these symmetries as prior knowledge can facilitate dynamic MR imaging with high spatiotemporal resolution. Equivariant CNN is an effective tool to leverage the symmetry priors. However, current equivariant CNN methods fail to fully exploit these symmetry priors in dynamic MR imaging. In this work, we propose a novel framework of Spatiotemporal Rotation-Equivariant CNN (SRE-CNN), spanning from the underlying high-precision filter design to the construction of the temporal-equivariant convolutional module and imaging model, to fully harness the rotation symmetries inherent in dynamic MR images. The temporal-equivariant convolutional module enables exploitation the rotation symmetries in both spatial and temporal dimensions, while the high-precision convolutional filter, based on parametrization strategy, enhances the utilization of rotation symmetry of local features to improve the reconstruction of detailed anatomical structures. Experiments conducted on highly undersampled dynamic cardiac cine data (up to 20X) have demonstrated the superior performance of our proposed approach, both quantitatively and qualitatively.




Abstract:As a popular form of knowledge and experience, patterns and their identification have been critical tasks in most data mining applications. However, as far as we are aware, no study has systematically examined the dynamics of pattern values and their reuse under varying conditions. We argue that when problem conditions such as the distributions of random variables change, the patterns that performed well in previous circumstances may become less effective and adoption of these patterns would result in sub-optimal solutions. In response, we make a connection between data mining and the duality theory in operations research and propose a novel scheme to efficiently identify patterns and dynamically quantify their values for each specific condition. Our method quantifies the value of patterns based on their ability to satisfy stochastic constraints and their effects on the objective value, allowing high-quality patterns and their combinations to be detected. We use the online bin packing problem to evaluate the effectiveness of the proposed scheme and illustrate the online packing procedure with the guidance of patterns that address the inherent uncertainty of the problem. Results show that the proposed algorithm significantly outperforms the state-of-the-art methods. We also analysed in detail the distinctive features of the proposed methods that lead to performance improvement and the special cases where our method can be further improved.