Abstract:Small lesions play a critical role in early disease diagnosis and intervention of severe infections. Popular models often face challenges in segmenting small lesions, as it occupies only a minor portion of an image, while down\_sampling operations may inevitably lose focus on local features of small lesions. To tackle the challenges, we propose a {\bf S}mall-{\bf S}ize-{\bf S}ensitive {\bf Mamba} ({\bf S$^3$-Mamba}), which promotes the sensitivity to small lesions across three dimensions: channel, spatial, and training strategy. Specifically, an Enhanced Visual State Space block is designed to focus on small lesions through multiple residual connections to preserve local features, and selectively amplify important details while suppressing irrelevant ones through channel-wise attention. A Tensor-based Cross-feature Multi-scale Attention is designed to integrate input image features and intermediate-layer features with edge features and exploit the attentive support of features across multiple scales, thereby retaining spatial details of small lesions at various granularities. Finally, we introduce a novel regularized curriculum learning to automatically assess lesion size and sample difficulty, and gradually focus from easy samples to hard ones like small lesions. Extensive experiments on three medical image segmentation datasets show the superiority of our S$^3$-Mamba, especially in segmenting small lesions. Our code is available at https://github.com/ErinWang2023/S3-Mamba.
Abstract:Dynamic MR images possess various transformation symmetries,including the rotation symmetry of local features within the image and along the temporal dimension. Utilizing these symmetries as prior knowledge can facilitate dynamic MR imaging with high spatiotemporal resolution. Equivariant CNN is an effective tool to leverage the symmetry priors. However, current equivariant CNN methods fail to fully exploit these symmetry priors in dynamic MR imaging. In this work, we propose a novel framework of Spatiotemporal Rotation-Equivariant CNN (SRE-CNN), spanning from the underlying high-precision filter design to the construction of the temporal-equivariant convolutional module and imaging model, to fully harness the rotation symmetries inherent in dynamic MR images. The temporal-equivariant convolutional module enables exploitation the rotation symmetries in both spatial and temporal dimensions, while the high-precision convolutional filter, based on parametrization strategy, enhances the utilization of rotation symmetry of local features to improve the reconstruction of detailed anatomical structures. Experiments conducted on highly undersampled dynamic cardiac cine data (up to 20X) have demonstrated the superior performance of our proposed approach, both quantitatively and qualitatively.
Abstract:As a popular form of knowledge and experience, patterns and their identification have been critical tasks in most data mining applications. However, as far as we are aware, no study has systematically examined the dynamics of pattern values and their reuse under varying conditions. We argue that when problem conditions such as the distributions of random variables change, the patterns that performed well in previous circumstances may become less effective and adoption of these patterns would result in sub-optimal solutions. In response, we make a connection between data mining and the duality theory in operations research and propose a novel scheme to efficiently identify patterns and dynamically quantify their values for each specific condition. Our method quantifies the value of patterns based on their ability to satisfy stochastic constraints and their effects on the objective value, allowing high-quality patterns and their combinations to be detected. We use the online bin packing problem to evaluate the effectiveness of the proposed scheme and illustrate the online packing procedure with the guidance of patterns that address the inherent uncertainty of the problem. Results show that the proposed algorithm significantly outperforms the state-of-the-art methods. We also analysed in detail the distinctive features of the proposed methods that lead to performance improvement and the special cases where our method can be further improved.
Abstract:The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable. Thus, benchmarking and advancing techniques detecting digital manipulation become an urgent issue. Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology, which does not involve the most recent technologies like diffusion. The diversity and quality of images generated by diffusion models have been significantly improved and thus a much more challenging face forgery dataset shall be used to evaluate SOTA forgery detection literature. In this paper, we propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection, which contains a large number of forgery faces generated by advanced generators such as the diffusion-based model and more detailed labels about the manipulation approaches and adopted generators. In addition to evaluating SOTA approaches on our benchmark, we design an innovative cross appearance-edge learning (CAEL) detector to capture multi-grained appearance and edge global representations, and detect discriminative and general forgery traces. Moreover, we devise an appearance-edge cross-attention (AECA) module to explore the various integrations across two domains. Extensive experiment results and visualizations show that our detection model outperforms the state of the arts on different settings like cross-generator, cross-forgery, and cross-dataset evaluations. Code and datasets will be available at \url{https://github.com/Jenine-321/GenFace
Abstract:Object detection in aerial imagery presents a significant challenge due to large scale variations among objects. This paper proposes an evolutionary reinforcement learning agent, integrated within a coarse-to-fine object detection framework, to optimize the scale for more effective detection of objects in such images. Specifically, a set of patches potentially containing objects are first generated. A set of rewards measuring the localization accuracy, the accuracy of predicted labels, and the scale consistency among nearby patches are designed in the agent to guide the scale optimization. The proposed scale-consistency reward ensures similar scales for neighboring objects of the same category. Furthermore, a spatial-semantic attention mechanism is designed to exploit the spatial semantic relations between patches. The agent employs the proximal policy optimization strategy in conjunction with the evolutionary strategy, effectively utilizing both the current patch status and historical experience embedded in the agent. The proposed model is compared with state-of-the-art methods on two benchmark datasets for object detection on drone imagery. It significantly outperforms all the compared methods.
Abstract:Deep neural networks have been applied to audio spectrograms for respiratory sound classification. Existing models often treat the spectrogram as a synthetic image while overlooking its physical characteristics. In this paper, a Multi-View Spectrogram Transformer (MVST) is proposed to embed different views of time-frequency characteristics into the vision transformer. Specifically, the proposed MVST splits the mel-spectrogram into different sized patches, representing the multi-view acoustic elements of a respiratory sound. These patches and positional embeddings are then fed into transformer encoders to extract the attentional information among patches through a self-attention mechanism. Finally, a gated fusion scheme is designed to automatically weigh the multi-view features to highlight the best one in a specific scenario. Experimental results on the ICBHI dataset demonstrate that the proposed MVST significantly outperforms state-of-the-art methods for classifying respiratory sounds.
Abstract:Detecting 3D mask attacks to a face recognition system is challenging. Although genuine faces and 3D face masks show significantly different remote photoplethysmography (rPPG) signals, rPPG-based face anti-spoofing methods often suffer from performance degradation due to unstable face alignment in the video sequence and weak rPPG signals. To enhance the rPPG signal in a motion-robust way, a landmark-anchored face stitching method is proposed to align the faces robustly and precisely at the pixel-wise level by using both SIFT keypoints and facial landmarks. To better encode the rPPG signal, a weighted spatial-temporal representation is proposed, which emphasizes the face regions with rich blood vessels. In addition, characteristics of rPPG signals in different color spaces are jointly utilized. To improve the generalization capability, a lightweight EfficientNet with a Gated Recurrent Unit (GRU) is designed to extract both spatial and temporal features from the rPPG spatial-temporal representation for classification. The proposed method is compared with the state-of-the-art methods on five benchmark datasets under both intra-dataset and cross-dataset evaluations. The proposed method shows a significant and consistent improvement in performance over other state-of-the-art rPPG-based methods for face spoofing detection.
Abstract:Cross-modal learning of video and text plays a key role in Video Question Answering (VideoQA). In this paper, we propose a visual-text attention mechanism to utilize the Contrastive Language-Image Pre-training (CLIP) trained on lots of general domain language-image pairs to guide the cross-modal learning for VideoQA. Specifically, we first extract video features using a TimeSformer and text features using a BERT from the target application domain, and utilize CLIP to extract a pair of visual-text features from the general-knowledge domain through the domain-specific learning. We then propose a Cross-domain Learning to extract the attention information between visual and linguistic features across the target domain and general domain. The set of CLIP-guided visual-text features are integrated to predict the answer. The proposed method is evaluated on MSVD-QA and MSRVTT-QA datasets, and outperforms state-of-the-art methods.
Abstract:Naive Bayes has been widely used in many applications because of its simplicity and ability in handling both numerical data and categorical data. However, lack of modeling of correlations between features limits its performance. In addition, noise and outliers in the real-world dataset also greatly degrade the classification performance. In this paper, we propose a feature augmentation method employing a stack auto-encoder to reduce the noise in the data and boost the discriminant power of naive Bayes. The proposed stack auto-encoder consists of two auto-encoders for different purposes. The first encoder shrinks the initial features to derive a compact feature representation in order to remove the noise and redundant information. The second encoder boosts the discriminant power of the features by expanding them into a higher-dimensional space so that different classes of samples could be better separated in the higher-dimensional space. By integrating the proposed feature augmentation method with the regularized naive Bayes, the discrimination power of the model is greatly enhanced. The proposed method is evaluated on a set of machine-learning benchmark datasets. The experimental results show that the proposed method significantly and consistently outperforms the state-of-the-art naive Bayes classifiers.
Abstract:In many classification models, data is discretized to better estimate its distribution. Existing discretization methods often target at maximizing the discriminant power of discretized data, while overlooking the fact that the primary target of data discretization in classification is to improve the generalization performance. As a result, the data tend to be over-split into many small bins since the data without discretization retain the maximal discriminant information. Thus, we propose a Max-Dependency-Min-Divergence (MDmD) criterion that maximizes both the discriminant information and generalization ability of the discretized data. More specifically, the Max-Dependency criterion maximizes the statistical dependency between the discretized data and the classification variable while the Min-Divergence criterion explicitly minimizes the JS-divergence between the training data and the validation data for a given discretization scheme. The proposed MDmD criterion is technically appealing, but it is difficult to reliably estimate the high-order joint distributions of attributes and the classification variable. We hence further propose a more practical solution, Max-Relevance-Min-Divergence (MRmD) discretization scheme, where each attribute is discretized separately, by simultaneously maximizing the discriminant information and the generalization ability of the discretized data. The proposed MRmD is compared with the state-of-the-art discretization algorithms under the naive Bayes classification framework on 45 machine-learning benchmark datasets. It significantly outperforms all the compared methods on most of the datasets.