The Hong Kong University of Science and Technology
Abstract:Machine learning has been successful in building control policies to drive a complex system to desired states in various applications (e.g. games, robotics, etc.). To be specific, a number of parameters of policy can be automatically optimized from the observations of environment to be able to generate a sequence of decisions leading to the best performance. In this survey paper, we particularly explore such policy-learning techniques for another unique, practical use-case scenario--farming, in which critical decisions (e.g., water supply, heating, etc.) must be made in a timely manner to minimize risks (e.g., damage to plants) while maximizing the revenue (e.g., healthy crops) in the end. We first provide a broad overview of latest studies on it to identify not only domain-specific challenges but opportunities with potential solutions, some of which are suggested as promising directions for future research. Also, we then introduce our successful approach to being ranked second among 46 teams at the ''3rd Autonomous Greenhouse Challenge'' to use this specific example to discuss the lessons learned about important considerations for design to create autonomous farm-management systems.
Abstract:Model-based reinforcement learning (MBRL) has demonstrated superior sample efficiency compared to model-free reinforcement learning (MFRL). However, the presence of inaccurate models can introduce biases during policy learning, resulting in misleading trajectories. The challenge lies in obtaining accurate models due to limited diverse training data, particularly in regions with limited visits (uncertain regions). Existing approaches passively quantify uncertainty after sample generation, failing to actively collect uncertain samples that could enhance state coverage and improve model accuracy. Moreover, MBRL often faces difficulties in making accurate multi-step predictions, thereby impacting overall performance. To address these limitations, we propose a novel framework for uncertainty-aware policy optimization with model-based exploratory planning. In the model-based planning phase, we introduce an uncertainty-aware k-step lookahead planning approach to guide action selection at each step. This process involves a trade-off analysis between model uncertainty and value function approximation error, effectively enhancing policy performance. In the policy optimization phase, we leverage an uncertainty-driven exploratory policy to actively collect diverse training samples, resulting in improved model accuracy and overall performance of the RL agent. Our approach offers flexibility and applicability to tasks with varying state/action spaces and reward structures. We validate its effectiveness through experiments on challenging robotic manipulation tasks and Atari games, surpassing state-of-the-art methods with fewer interactions, thereby leading to significant performance improvements.
Abstract:While NLP research has made strides in conversational tasks, many approaches focus on single-turn responses with well-defined objectives or evaluation criteria. In contrast, coaching presents unique challenges with initially undefined goals that evolve through multi-turn interactions, subjective evaluation criteria, mixed-initiative dialogue. In this work, we describe and implement five multi-turn coaching agents that exhibit distinct conversational styles, and evaluate them through a user study, collecting first-person feedback on 155 conversations. We find that users highly value core functionality, and that stylistic components in absence of core components are viewed negatively. By comparing user feedback with third-person evaluations from health experts and an LM, we reveal significant misalignment across evaluation approaches. Our findings provide insights into design and evaluation of conversational coaching agents and contribute toward improving human-centered NLP applications.
Abstract:Recent developments in deep reinforcement learning have been very successful in learning complex, previously intractable problems. Sample efficiency and local optimality, however, remain significant challenges. To address these challenges, novelty-driven exploration strategies have emerged and shown promising potential. Unfortunately, no single algorithm outperforms all others in all tasks and most of them struggle with tasks with high-dimensional and complex observations. In this work, we propose Adventurer, a novelty-driven exploration algorithm that is based on Bidirectional Generative Adversarial Networks (BiGAN), where BiGAN is trained to estimate state novelty. Intuitively, a generator that has been trained on the distribution of visited states should only be able to generate a state coming from the distribution of visited states. As a result, novel states using the generator to reconstruct input states from certain latent representations would lead to larger reconstruction errors. We show that BiGAN performs well in estimating state novelty for complex observations. This novelty estimation method can be combined with intrinsic-reward-based exploration. Our empirical results show that Adventurer produces competitive results on a range of popular benchmark tasks, including continuous robotic manipulation tasks (e.g. Mujoco robotics) and high-dimensional image-based tasks (e.g. Atari games).
Abstract:Inference scaling empowers LLMs with unprecedented reasoning ability, with reinforcement learning as the core technique to elicit complex reasoning. However, key technical details of state-of-the-art reasoning LLMs are concealed (such as in OpenAI o1 blog and DeepSeek R1 technical report), thus the community still struggles to reproduce their RL training results. We propose the $\textbf{D}$ecoupled Clip and $\textbf{D}$ynamic s$\textbf{A}$mpling $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{DAPO}$) algorithm, and fully open-source a state-of-the-art large-scale RL system that achieves 50 points on AIME 2024 using Qwen2.5-32B base model. Unlike previous works that withhold training details, we introduce four key techniques of our algorithm that make large-scale LLM RL a success. In addition, we open-source our training code, which is built on the verl framework, along with a carefully curated and processed dataset. These components of our open-source system enhance reproducibility and support future research in large-scale LLM RL.
Abstract:Transformer-based methods have demonstrated impressive performance in low-level visual tasks such as Image Super-Resolution (SR). However, its computational complexity grows quadratically with the spatial resolution. A series of works attempt to alleviate this problem by dividing Low-Resolution images into local windows, axial stripes, or dilated windows. SR typically leverages the redundancy of images for reconstruction, and this redundancy appears not only in local regions but also in long-range regions. However, these methods limit attention computation to content-agnostic local regions, limiting directly the ability of attention to capture long-range dependency. To address these issues, we propose a lightweight Content-Aware Token Aggregation Network (CATANet). Specifically, we propose an efficient Content-Aware Token Aggregation module for aggregating long-range content-similar tokens, which shares token centers across all image tokens and updates them only during the training phase. Then we utilize intra-group self-attention to enable long-range information interaction. Moreover, we design an inter-group cross-attention to further enhance global information interaction. The experimental results show that, compared with the state-of-the-art cluster-based method SPIN, our method achieves superior performance, with a maximum PSNR improvement of 0.33dB and nearly double the inference speed.
Abstract:Semi-supervised clustering is a basic problem in various applications. Most existing methods require knowledge of the ideal cluster number, which is often difficult to obtain in practice. Besides, satisfying the must-link constraints is another major challenge for these methods. In this work, we view the semi-supervised clustering task as a partitioning problem on a graph associated with the given dataset, where the similarity matrix includes a scaling parameter to reflect the must-link constraints. Utilizing a relaxation technique, we formulate the graph partitioning problem into a continuous optimization model that does not require the exact cluster number, but only an overestimate of it. We then propose a block coordinate descent algorithm to efficiently solve this model, and establish its convergence result. Based on the obtained solution, we can construct the clusters that theoretically meet the must-link constraints under mild assumptions. Furthermore, we verify the effectiveness and efficiency of our proposed method through comprehensive numerical experiments.
Abstract:Resting heart rate (RHR) is an important biomarker of cardiovascular health and mortality, but tracking it longitudinally generally requires a wearable device, limiting its availability. We present PHRM, a deep learning system for passive heart rate (HR) and RHR measurements during everyday smartphone use, using facial video-based photoplethysmography. Our system was developed using 225,773 videos from 495 participants and validated on 185,970 videos from 205 participants in laboratory and free-living conditions, representing the largest validation study of its kind. Compared to reference electrocardiogram, PHRM achieved a mean absolute percentage error (MAPE) < 10% for HR measurements across three skin tone groups of light, medium and dark pigmentation; MAPE for each skin tone group was non-inferior versus the others. Daily RHR measured by PHRM had a mean absolute error < 5 bpm compared to a wearable HR tracker, and was associated with known risk factors. These results highlight the potential of smartphones to enable passive and equitable heart health monitoring.
Abstract:We consider sparse principal component analysis (PCA) under a stochastic setting where the underlying probability distribution of the random parameter is uncertain. This problem is formulated as a distributionally robust optimization (DRO) model based on a constructive approach to capturing uncertainty in the covariance matrix, which constitutes a nonsmooth constrained min-max optimization problem. We further prove that the inner maximization problem admits a closed-form solution, reformulating the original DRO model into an equivalent minimization problem on the Stiefel manifold. This transformation leads to a Riemannian optimization problem with intricate nonsmooth terms, a challenging formulation beyond the reach of existing algorithms. To address this issue, we devise an efficient smoothing manifold proximal gradient algorithm. We prove the Riemannian gradient consistency and global convergence of our algorithm to a stationary point of the nonsmooth minimization problem. Moreover, we establish the iteration complexity of our algorithm. Finally, numerical experiments are conducted to validate the effectiveness and scalability of our algorithm, as well as to highlight the necessity and rationality of adopting the DRO model for sparse PCA.
Abstract:In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.