Abstract:Existing generative retrieval (GR) approaches rely on training-based indexing, i.e., fine-tuning a model to memorise the associations between a query and the document identifier (docid) of a relevant document. Training-based indexing has three limitations: high training overhead, under-utilization of the pre-trained knowledge of large language models (LLMs), and challenges in adapting to a dynamic document corpus. To address the above issues, we propose a novel few-shot indexing-based GR framework (Few-Shot GR). It has a novel few-shot indexing process, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Few-Shot GR relies solely on prompting an LLM without requiring any training, making it more efficient. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods that require heavy training.
Abstract:Incomplete relevance judgments limit the re-usability of test collections. When new systems are compared against previous systems used to build the pool of judged documents, they often do so at a disadvantage due to the ``holes'' in test collection (i.e., pockets of un-assessed documents returned by the new system). In this paper, we take initial steps towards extending existing test collections by employing Large Language Models (LLM) to fill the holes by leveraging and grounding the method using existing human judgments. We explore this problem in the context of Conversational Search using TREC iKAT, where information needs are highly dynamic and the responses (and, the results retrieved) are much more varied (leaving bigger holes). While previous work has shown that automatic judgments from LLMs result in highly correlated rankings, we find substantially lower correlates when human plus automatic judgments are used (regardless of LLM, one/two/few shot, or fine-tuned). We further find that, depending on the LLM employed, new runs will be highly favored (or penalized), and this effect is magnified proportionally to the size of the holes. Instead, one should generate the LLM annotations on the whole document pool to achieve more consistent rankings with human-generated labels. Future work is required to prompt engineering and fine-tuning LLMs to reflect and represent the human annotations, in order to ground and align the models, such that they are more fit for purpose.
Abstract:We study ranked list truncation (RLT) from a novel "retrieve-then-re-rank" perspective, where we optimize re-ranking by truncating the retrieved list (i.e., trim re-ranking candidates). RLT is crucial for re-ranking as it can improve re-ranking efficiency by sending variable-length candidate lists to a re-ranker on a per-query basis. It also has the potential to improve re-ranking effectiveness. Despite its importance, there is limited research into applying RLT methods to this new perspective. To address this research gap, we reproduce existing RLT methods in the context of re-ranking, especially newly emerged large language model (LLM)-based re-ranking. In particular, we examine to what extent established findings on RLT for retrieval are generalizable to the "retrieve-then-re-rank" setup from three perspectives: (i) assessing RLT methods in the context of LLM-based re-ranking with lexical first-stage retrieval, (ii) investigating the impact of different types of first-stage retrievers on RLT methods, and (iii) investigating the impact of different types of re-rankers on RLT methods. We perform experiments on the TREC 2019 and 2020 deep learning tracks, investigating 8 RLT methods for pipelines involving 3 retrievers and 2 re-rankers. We reach new insights into RLT methods in the context of re-ranking.
Abstract:Query performance prediction (QPP) aims to estimate the retrieval quality of a search system for a query without human relevance judgments. Previous QPP methods typically return a single scalar value and do not require the predicted values to approximate a specific information retrieval (IR) evaluation measure, leading to certain drawbacks: (i) a single scalar is insufficient to accurately represent different IR evaluation measures, especially when metrics do not highly correlate, and (ii) a single scalar limits the interpretability of QPP methods because solely using a scalar is insufficient to explain QPP results. To address these issues, we propose a QPP framework using automatically generated relevance judgments (QPP-GenRE), which decomposes QPP into independent subtasks of judging the relevance of each item in a ranked list to a given query. This allows us to predict any IR evaluation measure using the generated relevance judgments as pseudo-labels; Also, this allows us to interpret predicted IR evaluation measures, and identify, track and rectify errors in generated relevance judgments to improve QPP quality. We judge relevance by leveraging a leading open-source large language model (LLM), LLaMA, to ensure scientific reproducibility. In doing so, we address two main challenges: (i) excessive computational costs of judging the entire corpus for predicting a recall-based metric, and (ii) poor performance in prompting LLaMA in a zero-/few-shot manner. We devise an approximation strategy to predict a recall-oriented IR measure and propose to fine-tune LLaMA using human-labeled relevance judgments. Experiments on the TREC 2019-2022 deep learning tracks show that QPP-GenRE achieves state-of-the-art QPP accuracy for both lexical and neural rankers in both precision- and recall-oriented metrics.
Abstract:Identifying user intents in information-seeking dialogs is crucial for a system to meet user's information needs. Intent prediction (IP) is challenging and demands sufficient dialogs with human-labeled intents for training. However, manually annotating intents is resource-intensive. While large language models (LLMs) have been shown to be effective in generating synthetic data, there is no study on using LLMs to generate intent-aware information-seeking dialogs. In this paper, we focus on leveraging LLMs for zero-shot generation of large-scale, open-domain, and intent-aware information-seeking dialogs. We propose SOLID, which has novel self-seeding and multi-intent self-instructing schemes. The former improves the generation quality by using the LLM's own knowledge scope to initiate dialog generation; the latter prompts the LLM to generate utterances sequentially, and mitigates the need for manual prompt design by asking the LLM to autonomously adapt its prompt instruction when generating complex multi-intent utterances. Furthermore, we propose SOLID-RL, which is further trained to generate a dialog in one step on the data generated by SOLID. We propose a length-based quality estimation mechanism to assign varying weights to SOLID-generated dialogs based on their quality during the training process of SOLID-RL. We use SOLID and SOLID-RL to generate more than 300k intent-aware dialogs, surpassing the size of existing datasets. Experiments show that IP methods trained on dialogs generated by SOLID and SOLID-RL achieve better IP quality than ones trained on human-generated dialogs.
Abstract:Query performance prediction (QPP) is a core task in information retrieval. The QPP task is to predict the retrieval quality of a search system for a query without relevance judgments. Research has shown the effectiveness and usefulness of QPP for ad-hoc search. Recent years have witnessed considerable progress in conversational search (CS). Effective QPP could help a CS system to decide an appropriate action to be taken at the next turn. Despite its potential, QPP for CS has been little studied. We address this research gap by reproducing and studying the effectiveness of existing QPP methods in the context of CS. While the task of passage retrieval remains the same in the two settings, a user query in CS depends on the conversational history, introducing novel QPP challenges. In particular, we seek to explore to what extent findings from QPP methods for ad-hoc search generalize to three CS settings: (i) estimating the retrieval quality of different query rewriting-based retrieval methods, (ii) estimating the retrieval quality of a conversational dense retrieval method, and (iii) estimating the retrieval quality for top ranks vs. deeper-ranked lists. Our findings can be summarized as follows: (i) supervised QPP methods distinctly outperform unsupervised counterparts only when a large-scale training set is available; (ii) point-wise supervised QPP methods outperform their list-wise counterparts in most cases; and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in assessing the conversational dense retrieval method, ConvDR.
Abstract:Existing conversational systems tend to generate generic responses. Recently, Background Based Conversations (BBCs) have been introduced to address this issue. Here, the generated responses are grounded in some background information. The proposed methods for BBCs are able to generate more informative responses, they either cannot generate natural responses or have difficulty in locating the right background information. In this paper, we propose a Reference-aware Network (RefNet) to address the two issues. Unlike existing methods that generate responses token by token, RefNet incorporates a novel reference decoder that provides an alternative way to learn to directly cite a semantic unit (e.g., a span containing complete semantic information) from the background. Experimental results show that RefNet significantly outperforms state-of-the-art methods in terms of both automatic and human evaluations, indicating that RefNet can generate more appropriate and human-like responses.