Abstract:As large language models (LLMs) grow in size, traditional full fine-tuning becomes increasingly impractical due to its high computational and storage costs. Although popular parameter-efficient fine-tuning methods, such as LoRA, have significantly reduced the number of tunable parameters, there is still room for further optimization. In this work, we propose ASLoRA, a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing. Specifically, we share the low-rank matrix A across all layers and adaptively merge matrix B during training. This sharing mechanism not only mitigates overfitting effectively but also captures inter-layer dependencies, significantly enhancing the model's representational capability. We conduct extensive experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters, highlighting its flexibility and superior parameter efficiency. Furthermore, in-depth analyses of the adaptive sharing strategy confirm its significant advantages in enhancing both model flexibility and task adaptability.
Abstract:Recommender systems are quintessential applications of human-computer interaction. Widely utilized in daily life, they offer significant convenience but also present numerous challenges, such as the information cocoon effect, privacy concerns, fairness issues, and more. Consequently, this workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems~(HCRS). HCRS refers to the creation of recommender systems that prioritize human needs, values, and capabilities at the core of their design and operation. In this workshop, topics will include, but are not limited to, robustness, privacy, transparency, fairness, diversity, accountability, ethical considerations, and user-friendly design. We hope to engage in discussions on how to implement and enhance these properties in recommender systems. Additionally, participants will explore diverse evaluation methods, including innovative metrics that capture user satisfaction and trust. This workshop seeks to foster a collaborative environment for researchers to share insights and advance the field toward more ethical, user-centric, and socially responsible recommender systems.
Abstract:Online shopping platforms, such as Amazon and AliExpress, are increasingly prevalent in society, helping customers purchase products conveniently. With recent progress in natural language processing, researchers and practitioners shift their focus from traditional product search to conversational product search. Conversational product search enables user-machine conversations and through them collects explicit user feedback that allows to actively clarify the users' product preferences. Therefore, prospective research on an intelligent shopping assistant via conversations is indispensable. Existing publications on conversational product search either model conversations independently from users, queries, and products or lead to a vocabulary mismatch. In this work, we propose a new conversational product search model, ConvPS, to assist users in locating desirable items. The model is first trained to jointly learn the semantic representations of user, query, item, and conversation via a unified generative framework. After learning these representations, they are integrated to retrieve the target items in the latent semantic space. Meanwhile, we propose a set of greedy and explore-exploit strategies to learn to ask the user a sequence of high-performance questions for conversations. Our proposed ConvPS model can naturally integrate the representation learning of the user, query, item, and conversation into a unified generative framework, which provides a promising avenue for constructing accurate and robust conversational product search systems that are flexible and adaptive. Experimental results demonstrate that our ConvPS model significantly outperforms state-of-the-art baselines.
Abstract:Retrieval-augmented generation (RAG) has gained wide attention as the key component to improve generative models with external knowledge augmentation from information retrieval. It has shown great prominence in enhancing the functionality and performance of large language model (LLM)-based applications. However, with the comprehensive application of RAG, more and more problems and limitations have been identified, thus urgently requiring further fundamental exploration to improve current RAG frameworks. This workshop aims to explore in depth how to conduct refined and reliable RAG for downstream AI tasks. To this end, we propose to organize the first R3AG workshop at SIGIR-AP 2024 to call for participants to re-examine and formulate the basic principles and practical implementation of refined and reliable RAG. The workshop serves as a platform for both academia and industry researchers to conduct discussions, share insights, and foster research to build the next generation of RAG systems. Participants will engage in discussions and presentations focusing on fundamental challenges, cutting-edge research, and potential pathways to improve RAG. At the end of the workshop, we aim to have a clearer understanding of how to improve the reliability and applicability of RAG with more robust information retrieval and language generation.
Abstract:Recent information retrieval (IR) models are pre-trained and instruction-tuned on massive datasets and tasks, enabling them to perform well on a wide range of tasks and potentially generalize to unseen tasks with instructions. However, existing IR benchmarks focus on a limited scope of tasks, making them insufficient for evaluating the latest IR models. In this paper, we propose MAIR (Massive Instructed Retrieval Benchmark), a heterogeneous IR benchmark that includes 126 distinct IR tasks across 6 domains, collected from existing datasets. We benchmark state-of-the-art instruction-tuned text embedding models and re-ranking models. Our experiments reveal that instruction-tuned models generally achieve superior performance compared to non-instruction-tuned models on MAIR. Additionally, our results suggest that current instruction-tuned text embedding models and re-ranking models still lack effectiveness in specific long-tail tasks. MAIR is publicly available at https://github.com/sunnweiwei/Mair.
Abstract:As large language models (LLMs) are rapidly advancing and achieving near-human capabilities, aligning them with human values is becoming more urgent. In scenarios where LLMs outperform humans, we face a weak-to-strong alignment problem where we need to effectively align strong student LLMs through weak supervision generated by weak teachers. Existing alignment methods mainly focus on strong-to-weak alignment and self-alignment settings, and it is impractical to adapt them to the much harder weak-to-strong alignment setting. To fill this gap, we propose a multi-agent contrastive preference optimization (MACPO) framework. MACPO facilitates weak teachers and strong students to learn from each other by iteratively reinforcing unfamiliar positive behaviors while penalizing familiar negative ones. To get this, we devise a mutual positive behavior augmentation strategy to encourage weak teachers and strong students to learn from each other's positive behavior and further provide higher quality positive behavior for the next iteration. Additionally, we propose a hard negative behavior construction strategy to induce weak teachers and strong students to generate familiar negative behavior by fine-tuning on negative behavioral data. Experimental results on the HH-RLHF and PKU-SafeRLHF datasets, evaluated using both automatic metrics and human judgments, demonstrate that MACPO simultaneously improves the alignment performance of strong students and weak teachers. Moreover, as the number of weak teachers increases, MACPO achieves better weak-to-strong alignment performance through more iteration optimization rounds.
Abstract:Electronic commerce, or e-commerce, is the buying and selling of goods and services, or the transmitting of funds or data online. E-commerce platforms come in many kinds, with global players such as Amazon, Airbnb, Alibaba, Booking.com, eBay, JD.com and platforms targeting specific geographic regions such as Bol.com and Flipkart.com.Information retrieval has a natural role to play in e-commerce, especially in connecting people to goods and services. Information discovery in e-commerce concerns different types of search (e.g., exploratory search vs. lookup tasks), recommender systems, and natural language processing in e-commerce portals. The rise in popularity of e-commerce sites has made research on information discovery in e-commerce an increasingly active research area. This is witnessed by an increase in publications and dedicated workshops in this space. Methods for information discovery in e-commerce largely focus on improving the effectiveness of e-commerce search and recommender systems, on enriching and using knowledge graphs to support e-commerce, and on developing innovative question answering and bot-based solutions that help to connect people to goods and services. In this survey, an overview is given of the fundamental infrastructure, algorithms, and technical solutions for information discovery in e-commerce. The topics covered include user behavior and profiling, search, recommendation, and language technology in e-commerce.
Abstract:Despite large language models (LLMs) increasingly becoming important components of news recommender systems, employing LLMs in such systems introduces new risks, such as the influence of cognitive biases in LLMs. Cognitive biases refer to systematic patterns of deviation from norms or rationality in the judgment process, which can result in inaccurate outputs from LLMs, thus threatening the reliability of news recommender systems. Specifically, LLM-based news recommender systems affected by cognitive biases could lead to the propagation of misinformation, reinforcement of stereotypes, and the formation of echo chambers. In this paper, we explore the potential impact of multiple cognitive biases on LLM-based news recommender systems, including anchoring bias, framing bias, status quo bias and group attribution bias. Furthermore, to facilitate future research at improving the reliability of LLM-based news recommender systems, we discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
Abstract:In this paper, we analyze the capabilities of the multi-lingual Dense Passage Retriever (mDPR) for extremely low-resource languages. In the Cross-lingual Open-Retrieval Answer Generation (CORA) pipeline, mDPR achieves success on multilingual open QA benchmarks across 26 languages, of which 9 were unseen during training. These results are promising for Question Answering (QA) for low-resource languages. We focus on two extremely low-resource languages for which mDPR performs poorly: Amharic and Khmer. We collect and curate datasets to train mDPR models using Translation Language Modeling (TLM) and question--passage alignment. We also investigate the effect of our extension on the language distribution in the retrieval results. Our results on the MKQA and AmQA datasets show that language alignment brings improvements to mDPR for the low-resource languages, but the improvements are modest and the results remain low. We conclude that fulfilling CORA's promise to enable multilingual open QA in extremely low-resource settings is challenging because the model, the data, and the evaluation approach are intertwined. Hence, all three need attention in follow-up work. We release our code for reproducibility and future work: https://anonymous.4open.science/r/Question-Answering-for-Low-Resource-Languages-B13C/
Abstract:Existing generative retrieval (GR) approaches rely on training-based indexing, i.e., fine-tuning a model to memorise the associations between a query and the document identifier (docid) of a relevant document. Training-based indexing has three limitations: high training overhead, under-utilization of the pre-trained knowledge of large language models (LLMs), and challenges in adapting to a dynamic document corpus. To address the above issues, we propose a novel few-shot indexing-based GR framework (Few-Shot GR). It has a novel few-shot indexing process, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Few-Shot GR relies solely on prompting an LLM without requiring any training, making it more efficient. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods that require heavy training.