Abstract:Large Language Models (LLMs) inevitably acquire harmful information during training on massive datasets. LLM unlearning aims to eliminate the influence of such harmful information while maintaining the model's overall performance. Existing unlearning methods, represented by gradient ascent-based approaches, primarily focus on forgetting target data while overlooking the crucial impact of logically related knowledge on the effectiveness of unlearning. In this paper, through both theoretical and experimental analyses, we first demonstrate that a key reason for the suboptimal unlearning performance is that models can reconstruct the target content through reasoning with logically related knowledge. To address this issue, we propose Unlearning Improvement via Parameter Extrapolation (UIPE), a method that removes knowledge highly correlated with the forgetting targets. Experimental results show that UIPE significantly enhances the performance of various mainstream LLM unlearning methods on the TOFU benchmark.
Abstract:Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.
Abstract:Zero-shot named entity recognition (NER) aims to develop entity recognition systems from unannotated text corpora. This task presents substantial challenges due to minimal human intervention. Recent work has adapted large language models (LLMs) for zero-shot NER by crafting specialized prompt templates. It advances model self-learning abilities by incorporating self-annotated demonstrations. However, two important challenges persist: (i) Correlations between contexts surrounding entities are overlooked, leading to wrong type predictions or entity omissions. (ii) The indiscriminate use of task demonstrations, retrieved through shallow similarity-based strategies, severely misleads LLMs during inference. In this paper, we introduce the cooperative multi-agent system (CMAS), a novel framework for zero-shot NER that uses the collective intelligence of multiple agents to address the challenges outlined above. CMAS has four main agents: (i) a self-annotator, (ii) a type-related feature (TRF) extractor, (iii) a demonstration discriminator, and (iv) an overall predictor. To explicitly capture correlations between contexts surrounding entities, CMAS reformulates NER into two subtasks: recognizing named entities and identifying entity type-related features within the target sentence. To enable controllable utilization of demonstrations, a demonstration discriminator is established to incorporate the self-reflection mechanism, automatically evaluating helpfulness scores for the target sentence. Experimental results show that CMAS significantly improves zero-shot NER performance across six benchmarks, including both domain-specific and general-domain scenarios. Furthermore, CMAS demonstrates its effectiveness in few-shot settings and with various LLM backbones.
Abstract:Existing preference optimization objectives for language model alignment require additional hyperparameters that must be extensively tuned to achieve optimal performance, increasing both the complexity and time required for fine-tuning large language models. In this paper, we propose a simple yet effective hyperparameter-free preference optimization algorithm for alignment. We observe that promising performance can be achieved simply by optimizing inverse perplexity, which is calculated as the inverse of the exponentiated average log-likelihood of the chosen and rejected responses in the preference dataset. The resulting simple learning objective, SimPER, is easy to implement and eliminates the need for expensive hyperparameter tuning and a reference model, making it both computationally and memory efficient. Extensive experiments on widely used real-world benchmarks, including MT-Bench, AlpacaEval 2, and 10 key benchmarks of the Open LLM Leaderboard with 5 base models, demonstrate that SimPER consistently and significantly outperforms existing approaches-even without any hyperparameters or a reference model . For example, despite its simplicity, SimPER outperforms state-of-the-art methods by up to 5.7 points on AlpacaEval 2 and achieves the highest average ranking across 10 benchmarks on the Open LLM Leaderboard. The source code for SimPER is publicly available at: https://github.com/tengxiao1/SimPER.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of tasks by understanding input information and predicting corresponding outputs. However, the internal mechanisms by which LLMs comprehend input and make effective predictions remain poorly understood. In this paper, we explore the working mechanism of LLMs in information processing from the perspective of Information Bottleneck Theory. We propose a non-training construction strategy to define a task space and identify the following key findings: (1) LLMs compress input information into specific task spaces (e.g., sentiment space, topic space) to facilitate task understanding; (2) they then extract and utilize relevant information from the task space at critical moments to generate accurate predictions. Based on these insights, we introduce two novel approaches: an Information Compression-based Context Learning (IC-ICL) and a Task-Space-guided Fine-Tuning (TS-FT). IC-ICL enhances reasoning performance and inference efficiency by compressing retrieved example information into the task space. TS-FT employs a space-guided loss to fine-tune LLMs, encouraging the learning of more effective compression and selection mechanisms. Experiments across multiple datasets validate the effectiveness of task space construction. Additionally, IC-ICL not only improves performance but also accelerates inference speed by over 40\%, while TS-FT achieves superior results with a minimal strategy adjustment.
Abstract:As large language models (LLMs) grow in size, traditional full fine-tuning becomes increasingly impractical due to its high computational and storage costs. Although popular parameter-efficient fine-tuning methods, such as LoRA, have significantly reduced the number of tunable parameters, there is still room for further optimization. In this work, we propose ASLoRA, a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing. Specifically, we share the low-rank matrix A across all layers and adaptively merge matrix B during training. This sharing mechanism not only mitigates overfitting effectively but also captures inter-layer dependencies, significantly enhancing the model's representational capability. We conduct extensive experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters, highlighting its flexibility and superior parameter efficiency. Furthermore, in-depth analyses of the adaptive sharing strategy confirm its significant advantages in enhancing both model flexibility and task adaptability.
Abstract:Recommender systems are quintessential applications of human-computer interaction. Widely utilized in daily life, they offer significant convenience but also present numerous challenges, such as the information cocoon effect, privacy concerns, fairness issues, and more. Consequently, this workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems~(HCRS). HCRS refers to the creation of recommender systems that prioritize human needs, values, and capabilities at the core of their design and operation. In this workshop, topics will include, but are not limited to, robustness, privacy, transparency, fairness, diversity, accountability, ethical considerations, and user-friendly design. We hope to engage in discussions on how to implement and enhance these properties in recommender systems. Additionally, participants will explore diverse evaluation methods, including innovative metrics that capture user satisfaction and trust. This workshop seeks to foster a collaborative environment for researchers to share insights and advance the field toward more ethical, user-centric, and socially responsible recommender systems.
Abstract:Online shopping platforms, such as Amazon and AliExpress, are increasingly prevalent in society, helping customers purchase products conveniently. With recent progress in natural language processing, researchers and practitioners shift their focus from traditional product search to conversational product search. Conversational product search enables user-machine conversations and through them collects explicit user feedback that allows to actively clarify the users' product preferences. Therefore, prospective research on an intelligent shopping assistant via conversations is indispensable. Existing publications on conversational product search either model conversations independently from users, queries, and products or lead to a vocabulary mismatch. In this work, we propose a new conversational product search model, ConvPS, to assist users in locating desirable items. The model is first trained to jointly learn the semantic representations of user, query, item, and conversation via a unified generative framework. After learning these representations, they are integrated to retrieve the target items in the latent semantic space. Meanwhile, we propose a set of greedy and explore-exploit strategies to learn to ask the user a sequence of high-performance questions for conversations. Our proposed ConvPS model can naturally integrate the representation learning of the user, query, item, and conversation into a unified generative framework, which provides a promising avenue for constructing accurate and robust conversational product search systems that are flexible and adaptive. Experimental results demonstrate that our ConvPS model significantly outperforms state-of-the-art baselines.
Abstract:Retrieval-augmented generation (RAG) has gained wide attention as the key component to improve generative models with external knowledge augmentation from information retrieval. It has shown great prominence in enhancing the functionality and performance of large language model (LLM)-based applications. However, with the comprehensive application of RAG, more and more problems and limitations have been identified, thus urgently requiring further fundamental exploration to improve current RAG frameworks. This workshop aims to explore in depth how to conduct refined and reliable RAG for downstream AI tasks. To this end, we propose to organize the first R3AG workshop at SIGIR-AP 2024 to call for participants to re-examine and formulate the basic principles and practical implementation of refined and reliable RAG. The workshop serves as a platform for both academia and industry researchers to conduct discussions, share insights, and foster research to build the next generation of RAG systems. Participants will engage in discussions and presentations focusing on fundamental challenges, cutting-edge research, and potential pathways to improve RAG. At the end of the workshop, we aim to have a clearer understanding of how to improve the reliability and applicability of RAG with more robust information retrieval and language generation.
Abstract:Recent information retrieval (IR) models are pre-trained and instruction-tuned on massive datasets and tasks, enabling them to perform well on a wide range of tasks and potentially generalize to unseen tasks with instructions. However, existing IR benchmarks focus on a limited scope of tasks, making them insufficient for evaluating the latest IR models. In this paper, we propose MAIR (Massive Instructed Retrieval Benchmark), a heterogeneous IR benchmark that includes 126 distinct IR tasks across 6 domains, collected from existing datasets. We benchmark state-of-the-art instruction-tuned text embedding models and re-ranking models. Our experiments reveal that instruction-tuned models generally achieve superior performance compared to non-instruction-tuned models on MAIR. Additionally, our results suggest that current instruction-tuned text embedding models and re-ranking models still lack effectiveness in specific long-tail tasks. MAIR is publicly available at https://github.com/sunnweiwei/Mair.