Abstract:Recent advancements have successfully harnessed the power of Large Language Models (LLMs) for zero-shot document ranking, exploring a variety of prompting strategies. Comparative approaches like pairwise and listwise achieve high effectiveness but are computationally intensive and thus less practical for larger-scale applications. Scoring-based pointwise approaches exhibit superior efficiency by independently and simultaneously generating the relevance scores for each candidate document. However, this independence ignores critical comparative insights between documents, resulting in inconsistent scoring and suboptimal performance. In this paper, we aim to improve the effectiveness of pointwise methods while preserving their efficiency through two key innovations: (1) We propose a novel Global-Consistent Comparative Pointwise Ranking (GCCP) strategy that incorporates global reference comparisons between each candidate and an anchor document to generate contrastive relevance scores. We strategically design the anchor document as a query-focused summary of pseudo-relevant candidates, which serves as an effective reference point by capturing the global context for document comparison. (2) These contrastive relevance scores can be efficiently Post-Aggregated with existing pointwise methods, seamlessly integrating essential Global Context information in a training-free manner (PAGC). Extensive experiments on the TREC DL and BEIR benchmark demonstrate that our approach significantly outperforms previous pointwise methods while maintaining comparable efficiency. Our method also achieves competitive performance against comparative methods that require substantially more computational resources. More analyses further validate the efficacy of our anchor construction strategy.
Abstract:Offline reinforcement learning (RL) heavily relies on the coverage of pre-collected data over the target policy's distribution. Existing studies aim to improve data-policy coverage to mitigate distributional shifts, but overlook security risks from insufficient coverage, and the single-step analysis is not consistent with the multi-step decision-making nature of offline RL. To address this, we introduce the sequence-level concentrability coefficient to quantify coverage, and reveal its exponential amplification on the upper bound of estimation errors through theoretical analysis. Building on this, we propose the Collapsing Sequence-Level Data-Policy Coverage (CSDPC) poisoning attack. Considering the continuous nature of offline RL data, we convert state-action pairs into decision units, and extract representative decision patterns that capture multi-step behavior. We identify rare patterns likely to cause insufficient coverage, and poison them to reduce coverage and exacerbate distributional shifts. Experiments show that poisoning just 1% of the dataset can degrade agent performance by 90%. This finding provides new perspectives for analyzing and safeguarding the security of offline RL.
Abstract:Large Audio-Language Models (LALMs) have significantly advanced intelligent human-computer interaction, yet their reliance on text-based outputs limits their ability to generate natural speech responses directly, hindering seamless audio interactions. To address this, we introduce Step-Audio-AQAA, a fully end-to-end LALM designed for Audio Query-Audio Answer (AQAA) tasks. The model integrates a dual-codebook audio tokenizer for linguistic and semantic feature extraction, a 130-billion-parameter backbone LLM and a neural vocoder for high-fidelity speech synthesis. Our post-training approach employs interleaved token-output of text and audio to enhance semantic coherence and combines Direct Preference Optimization (DPO) with model merge to improve performance. Evaluations on the StepEval-Audio-360 benchmark demonstrate that Step-Audio-AQAA excels especially in speech control, outperforming the state-of-art LALMs in key areas. This work contributes a promising solution for end-to-end LALMs and highlights the critical role of token-based vocoder in enhancing overall performance for AQAA tasks.
Abstract:Recent advances in deep learning have significantly enhanced generative AI capabilities across text, images, and audio. However, automatically evaluating the quality of these generated outputs presents ongoing challenges. Although numerous automatic evaluation methods exist, current research lacks a systematic framework that comprehensively organizes these methods across text, visual, and audio modalities. To address this issue, we present a comprehensive review and a unified taxonomy of automatic evaluation methods for generated content across all three modalities; We identify five fundamental paradigms that characterize existing evaluation approaches across these domains. Our analysis begins by examining evaluation methods for text generation, where techniques are most mature. We then extend this framework to image and audio generation, demonstrating its broad applicability. Finally, we discuss promising directions for future research in cross-modal evaluation methodologies.
Abstract:The rapid progress in diffusion-based text-to-image (T2I) generation has created an urgent need for interpretable automatic evaluation methods that can assess the quality of generated images, therefore reducing the human annotation burden. To reduce the prohibitive cost of relying on commercial models for large-scale evaluation, and to improve the reasoning capabilities of open-source models, recent research has explored supervised fine-tuning (SFT) of multimodal large language models (MLLMs) as dedicated T2I evaluators. However, SFT approaches typically rely on high-quality critique datasets, which are either generated by proprietary LLMs-with potential issues of bias and inconsistency-or annotated by humans at high cost, limiting their scalability and generalization. To address these limitations, we propose T2I-Eval-R1, a novel reinforcement learning framework that trains open-source MLLMs using only coarse-grained quality scores, thereby avoiding the need for annotating high-quality interpretable evaluation rationale. Our approach integrates Group Relative Policy Optimization (GRPO) into the instruction-tuning process, enabling models to generate both scalar scores and interpretable reasoning chains with only easy accessible annotated judgment scores or preferences. Furthermore, we introduce a continuous reward formulation that encourages score diversity and provides stable optimization signals, leading to more robust and discriminative evaluation behavior. Experimental results on three established T2I meta-evaluation benchmarks demonstrate that T2I-Eval-R1 achieves significantly higher alignment with human assessments and offers more accurate interpretable score rationales compared to strong baseline methods.
Abstract:RWKV is a modern RNN architecture with comparable performance to Transformer, but still faces challenges when deployed to resource-constrained devices. Post Training Quantization (PTQ), which is a an essential technique to reduce model size and inference latency, has been widely used in Transformer models. However, it suffers significant degradation of performance when applied to RWKV. This paper investigates and identifies two key constraints inherent in the properties of RWKV: (1) Non-linear operators hinder the parameter-fusion of both smooth- and rotation-based quantization, introducing extra computation overhead. (2) The larger amount of uniformly distributed weights poses challenges for cluster-based quantization, leading to reduced accuracy. To this end, we propose RWKVQuant, a PTQ framework tailored for RWKV models, consisting of two novel techniques: (1) a coarse-to-fine proxy capable of adaptively selecting different quantization approaches by assessing the uniformity and identifying outliers in the weights, and (2) a codebook optimization algorithm that enhances the performance of cluster-based quantization methods for element-wise multiplication in RWKV. Experiments show that RWKVQuant can quantize RWKV-6-14B into about 3-bit with less than 1% accuracy loss and 2.14x speed up.
Abstract:Mixture-of-Experts (MoE) large language models (LLMs), which leverage dynamic routing and sparse activation to enhance efficiency and scalability, have achieved higher performance while reducing computational costs. However, these models face significant memory overheads, limiting their practical deployment and broader adoption. Post-training quantization (PTQ), a widely used method for compressing LLMs, encounters severe accuracy degradation and diminished generalization performance when applied to MoE models. This paper investigates the impact of MoE's sparse and dynamic characteristics on quantization and identifies two primary challenges: (1) Inter-expert imbalance, referring to the uneven distribution of samples across experts, which leads to insufficient and biased calibration for less frequently utilized experts; (2) Intra-expert imbalance, arising from MoE's unique aggregation mechanism, which leads to varying degrees of correlation between different samples and their assigned experts. To address these challenges, we propose MoEQuant, a novel quantization framework tailored for MoE LLMs. MoE-Quant includes two novel techniques: 1) Expert-Balanced Self-Sampling (EBSS) is an efficient sampling method that efficiently constructs a calibration set with balanced expert distributions by leveraging the cumulative probabilities of tokens and expert balance metrics as guiding factors. 2) Affinity-Guided Quantization (AGQ), which incorporates affinities between experts and samples into the quantization process, thereby accurately assessing the impact of individual samples on different experts within the MoE layer. Experiments demonstrate that MoEQuant achieves substantial performance gains (more than 10 points accuracy gain in the HumanEval for DeepSeekMoE-16B under 4-bit quantization) and boosts efficiency.
Abstract:Variational Autoencoders (VAEs) typically rely on a probabilistic decoder with a predefined likelihood, most commonly an isotropic Gaussian, to model the data conditional on latent variables. While convenient for optimization, this choice often leads to likelihood misspecification, resulting in blurry reconstructions and poor data fidelity, especially for high-dimensional data such as images. In this work, we propose \textit{EnVAE}, a novel likelihood-free generative framework that has a deterministic decoder and employs the energy score -- a proper scoring rule -- to build the reconstruction loss. This enables likelihood-free inference without requiring explicit parametric density functions. To address the computational inefficiency of the energy score, we introduce a fast variant, \textit{FEnVAE}, based on the local smoothness of the decoder and the sharpness of the posterior distribution of latent variables. This yields an efficient single-sample training objective that integrates seamlessly into existing VAE pipelines with minimal overhead. Empirical results on standard benchmarks demonstrate that \textit{EnVAE} achieves superior reconstruction and generation quality compared to likelihood-based baselines. Our framework offers a general, scalable, and statistically principled alternative for flexible and nonparametric distribution learning in generative modeling.
Abstract:Fairness is an increasingly important factor in re-ranking tasks. Prior work has identified a trade-off between ranking accuracy and item fairness. However, the underlying mechanisms are still not fully understood. An analogy can be drawn between re-ranking and the dynamics of economic transactions. The accuracy-fairness trade-off parallels the coupling of the commodity tax transfer process. Fairness considerations in re-ranking, similar to a commodity tax on suppliers, ultimately translate into a cost passed on to consumers. Analogously, item-side fairness constraints result in a decline in user-side accuracy. In economics, the extent to which commodity tax on the supplier (item fairness) transfers to commodity tax on users (accuracy loss) is formalized using the notion of elasticity. The re-ranking fairness-accuracy trade-off is similarly governed by the elasticity of utility between item groups. This insight underscores the limitations of current fair re-ranking evaluations, which often rely solely on a single fairness metric, hindering comprehensive assessment of fair re-ranking algorithms. Centered around the concept of elasticity, this work presents two significant contributions. We introduce the Elastic Fairness Curve (EF-Curve) as an evaluation framework. This framework enables a comparative analysis of algorithm performance across different elasticity levels, facilitating the selection of the most suitable approach. Furthermore, we propose ElasticRank, a fair re-ranking algorithm that employs elasticity calculations to adjust inter-item distances within a curved space. Experiments on three widely used ranking datasets demonstrate its effectiveness and efficiency.
Abstract:In multi-stakeholder recommender systems (RS), users and providers operate as two crucial and interdependent roles, whose interests must be well-balanced. Prior research, including our work BankFair, has demonstrated the importance of guaranteeing both provider fairness and user accuracy to meet their interests. However, when they balance the two objectives, another critical factor emerges in RS: individual fairness, which manifests as a significant disparity in individual recommendation accuracy, with some users receiving high accuracy while others are left with notably low accuracy. This oversight severely harms the interests of users and exacerbates social polarization. How to guarantee individual fairness while ensuring user accuracy and provider fairness remains an unsolved problem. To bridge this gap, in this paper, we propose our method BankFair+. Specifically, BankFair+ extends BankFair with two steps: (1) introducing a non-linear function from regret theory to ensure individual fairness while enhancing user accuracy; (2) formulating the re-ranking process as a regret-aware fuzzy programming problem to meet the interests of both individual user and provider, therefore balancing the trade-off between individual fairness and provider fairness. Experiments on two real-world recommendation datasets demonstrate that BankFair+ outperforms all baselines regarding individual fairness, user accuracy, and provider fairness.