Abstract:Long-form document matching aims to judge the relevance between two documents and has been applied to various scenarios. Most existing works utilize hierarchical or long context models to process documents, which achieve coarse understanding but may ignore details. Some researchers construct a document view with similar sentences about aligned document subtopics to focus on detailed matching signals. However, a long document generally contains multiple subtopics. The matching signals are heterogeneous from multiple topics. Considering only the homologous aligned subtopics may not be representative enough and may cause biased modeling. In this paper, we introduce a new framework to model representative matching signals. First, we propose to capture various matching signals through subtopics of document pairs. Next, We construct multiple document views based on subtopics to cover heterogeneous and valuable details. However, existing spatial aggregation methods like attention, which integrate all these views simultaneously, are hard to integrate heterogeneous information. Instead, we propose temporal aggregation, which effectively integrates different views gradually as the training progresses. Experimental results show that our learning framework is effective on several document-matching tasks, including news duplication and legal case retrieval.
Abstract:Dynamic scene reconstruction is essential in robotic minimally invasive surgery, providing crucial spatial information that enhances surgical precision and outcomes. However, existing methods struggle to address the complex, temporally dynamic nature of endoscopic scenes. This paper presents ST-Endo4DGS, a novel framework that models the spatio-temporal volume of dynamic endoscopic scenes using unbiased 4D Gaussian Splatting (4DGS) primitives, parameterized by anisotropic ellipses with flexible 4D rotations. This approach enables precise representation of deformable tissue dynamics, capturing intricate spatial and temporal correlations in real time. Additionally, we extend spherindrical harmonics to represent time-evolving appearance, achieving realistic adaptations to lighting and view changes. A new endoscopic normal alignment constraint (ENAC) further enhances geometric fidelity by aligning rendered normals with depth-derived geometry. Extensive evaluations show that ST-Endo4DGS outperforms existing methods in both visual quality and real-time performance, establishing a new state-of-the-art in dynamic scene reconstruction for endoscopic surgery.
Abstract:Fine-grained video action recognition can be conceptualized as a video-text matching problem. Previous approaches often rely on global video semantics to consolidate video embeddings, which can lead to misalignment in video-text pairs due to a lack of understanding of action semantics at an atomic granularity level. To tackle this challenge, we propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics. Inspired by the concept of storyboarding, which disassembles a script into individual shots, we enhance global video semantics by generating fine-grained descriptions using a pre-trained large language model. These detailed descriptions capture common atomic actions depicted in videos. A filtering metric is proposed to select the descriptions that correspond to the atomic actions present in both the videos and the descriptions. By employing global semantics and fine-grained descriptions, we can identify key frames in videos and utilize them to aggregate embeddings, thereby making the embedding more accurate. Extensive experiments on various video action recognition datasets demonstrate superior performance of our proposed method in supervised, few-shot, and zero-shot settings.
Abstract:The emergence of Large Language Models (LLMs) has revolutionized how users access information, shifting from traditional search engines to direct question-and-answer interactions with LLMs. However, the widespread adoption of LLMs has revealed a significant challenge known as hallucination, wherein LLMs generate coherent yet factually inaccurate responses. This hallucination phenomenon has led to users' distrust in information retrieval systems based on LLMs. To tackle this challenge, this paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in LLMs. DRAD improves upon traditional retrieval augmentation by dynamically adapting the retrieval process based on real-time hallucination detection. It features two main components: Real-time Hallucination Detection (RHD) for identifying potential hallucinations without external models, and Self-correction based on External Knowledge (SEK) for correcting these errors using external knowledge. Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs. All of our code and data are open-sourced at https://github.com/oneal2000/EntityHallucination.
Abstract:Retrieval-Augmented Language Modeling (RALM) by integrating large language models (LLM) with relevant documents from an external corpus is a proven method for enabling the LLM to generate information beyond the scope of its pre-training corpus. Previous work using utilizing retrieved content by simply prepending retrieved contents to the input poses a high runtime issue, which degrades the inference efficiency of the LLMs because they fail to use the Key-Value (KV) cache efficiently. In this paper, we propose \textsc{FlashBack}, a modular RALM designed to improve the inference efficiency of RALM with appending context pattern while maintaining decent performance after specific fine-tuning without heavily destruct the knowledge integrity of the LLM. \textsc{FlashBack} appends retrieved documents at the end of the context for efficiently utilizing the KV cache instead of prepending them. Our experiment shows that the inference speed of \textsc{FlashBack} is up to $4\times$ faster than the prepending method on a 7B LLM (Llama 2). Via bypassing unnecessary re-computation, it demonstrates an advancement by achieving significantly faster inference speed, and this heightened efficiency will substantially reduce inferential cost. Our code will be publicly available.
Abstract:Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains.
Abstract:Dynamic retrieval augmented generation (RAG) paradigm actively decides when and what to retrieve during the text generation process of Large Language Models (LLMs). There are two key elements of this paradigm: identifying the optimal moment to activate the retrieval module (deciding when to retrieve) and crafting the appropriate query once retrieval is triggered (determining what to retrieve). However, current dynamic RAG methods fall short in both aspects. Firstly, the strategies for deciding when to retrieve often rely on static rules. Moreover, the strategies for deciding what to retrieve typically limit themselves to the LLM's most recent sentence or the last few tokens, while the LLM's real-time information needs may span across the entire context. To overcome these limitations, we introduce a new framework, DRAGIN, i.e., Dynamic Retrieval Augmented Generation based on the real-time Information Needs of LLMs. Our framework is specifically designed to make decisions on when and what to retrieve based on the LLM's real-time information needs during the text generation process. We evaluate DRAGIN along with existing methods comprehensively over 4 knowledge-intensive generation datasets. Experimental results show that DRAGIN achieves superior performance on all tasks, demonstrating the effectiveness of our method. We have open-sourced all the code, data, and models in GitHub: https://github.com/oneal2000/DRAGIN/tree/main
Abstract:Hallucinations in large language models (LLMs) refer to the phenomenon of LLMs producing responses that are coherent yet factually inaccurate. This issue undermines the effectiveness of LLMs in practical applications, necessitating research into detecting and mitigating hallucinations of LLMs. Previous studies have mainly concentrated on post-processing techniques for hallucination detection, which tend to be computationally intensive and limited in effectiveness due to their separation from the LLM's inference process. To overcome these limitations, we introduce MIND, an unsupervised training framework that leverages the internal states of LLMs for real-time hallucination detection without requiring manual annotations. Additionally, we present HELM, a new benchmark for evaluating hallucination detection across multiple LLMs, featuring diverse LLM outputs and the internal states of LLMs during their inference process. Our experiments demonstrate that MIND outperforms existing state-of-the-art methods in hallucination detection.
Abstract:Legal case retrieval, which aims to retrieve relevant cases to a given query case, benefits judgment justice and attracts increasing attention. Unlike generic retrieval queries, legal case queries are typically long and the definition of relevance is closely related to legal-specific elements. Therefore, legal case queries may suffer from noise and sparsity of salient content, which hinders retrieval models from perceiving correct information in a query. While previous studies have paid attention to improving retrieval models and understanding relevance judgments, we focus on enhancing legal case retrieval by utilizing the salient content in legal case queries. We first annotate the salient content in queries manually and investigate how sparse and dense retrieval models attend to those content. Then we experiment with various query content selection methods utilizing large language models (LLMs) to extract or summarize salient content and incorporate it into the retrieval models. Experimental results show that reformulating long queries using LLMs improves the performance of both sparse and dense models in legal case retrieval.
Abstract:Information Retrieval (IR), the process of finding information to satisfy user's information needs, plays an essential role in modern people's lives. Recently, large language models (LLMs) have demonstrated remarkable capabilities across various tasks, some of which are important for IR. Nonetheless, LLMs frequently confront the issue of generating responses that lack specificity. This has limited the overall effectiveness of LLMs for IR in many cases. To address these issues, we present an unsupervised alignment framework called Reinforcement Learning from Contrastive Feedback (RLCF), which empowers LLMs to generate both high-quality and context-specific responses that suit the needs of IR tasks. Specifically, we construct contrastive feedback by comparing each document with its similar documents, and then propose a reward function named Batched-MRR to teach LLMs to generate responses that captures the fine-grained information that distinguish documents from their similar ones. To demonstrate the effectiveness of RLCF, we conducted experiments in two typical applications of LLMs in IR, i.e., data augmentation and summarization. The experimental results show that RLCF can effectively improve the performance of LLMs in IR context.