Abstract:Multi-step reasoning ability of large language models is crucial in tasks such as math and tool utilization. Current researches predominantly focus on enhancing model performance in these multi-step reasoning tasks through fine-tuning with Chain-of-Thought (CoT) steps, yet these methods tend to be heuristic, without exploring nor resolving the bottleneck. In this study, we subdivide CoT reasoning into two parts: arranging and executing, and identify that the bottleneck of models mainly lies in arranging rather than executing. Based on this finding, we propose a plan-based training and reasoning method that guides models to generate arranging steps through abstract plans. We experiment on both math (GSM8k) and tool utilization (ToolBench) benchmarks. Results show that compared to fine-tuning directly with CoT data, our approach achieves a better performance on alleviating arranging bottleneck, particularly excelling in long-distance reasoning generalization.
Abstract:Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
Abstract:Event extraction has gained extensive research attention due to its broad range of applications. However, the current mainstream evaluation method for event extraction relies on token-level exact match, which misjudges numerous semantic-level correct cases. This reliance leads to a significant discrepancy between the evaluated performance of models under exact match criteria and their real performance. To address this problem, we propose RAEE, an automatic evaluation framework that accurately assesses event extraction results at semantic-level instead of token-level. Specifically, RAEE leverages Large Language Models (LLMs) as automatic evaluation agents, incorporating chain-of-thought prompting and an adaptive mechanism to achieve interpretable and adaptive evaluations for precision and recall of triggers and arguments. Extensive experimental results demonstrate that: (1) RAEE achieves a very high correlation with the human average; (2) after reassessing 14 models, including advanced LLMs, on 10 datasets, there is a significant performance gap between exact match and RAEE. The exact match evaluation significantly underestimates the performance of existing event extraction models, particularly underestimating the capabilities of LLMs; (3) fine-grained analysis under RAEE evaluation reveals insightful phenomena worth further exploration. The evaluation toolkit of our proposed RAEE will be publicly released.
Abstract:Sequential recommender systems are essential for discerning user preferences from historical interactions and facilitating targeted recommendations. Recent innovations employing Large Language Models (LLMs) have advanced the field by encoding item semantics, yet they often necessitate substantial parameter tuning and are resource-demanding. Moreover, these works fails to consider the diverse characteristics of different types of users and thus diminishes the recommendation accuracy. In this paper, we propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser). Specifically, Bi-Tuning works by inserting trainable virtual tokens at both the prefix and suffix of the input sequence and freezing the LLM parameters, thus optimizing the LLM for the sequential recommendation. In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation. Furthermore, to capture the characteristics of different types of users when integrating the collaborative information via the prefix, we introduce M-Former, a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems, significantly improving the accuracy of recommendations. Extensive experiments on real-world datasets demonstrate that Laser can parameter-efficiently adapt LLMs to effective recommender systems, significantly outperforming state-of-the-art methods.
Abstract:Domain adaptation aims to enable Large Language Models (LLMs) to generalize domain datasets unseen effectively during the training phase. However, factors such as the size of the model parameters and the scale of training data are general influencers and do not reflect the nuances of domain adaptation performance. This paper investigates the fine-grained factors affecting domain adaptation performance, analyzing the specific impact of `words' in training data on summarization tasks. We propose quantifying dataset learning difficulty as the learning difficulty of generative summarization, which is determined by two indicators: word-based compression rate and abstraction level. Our experiments conclude that, when considering dataset learning difficulty, the cross-domain overlap and the performance gain in summarization tasks exhibit an approximate linear relationship, which is not directly related to the number of words. Based on this finding, predicting a model's performance on unknown domain datasets is possible without undergoing training.
Abstract:It is crucial to utilize events to understand a specific domain. There are lots of research on event extraction in many domains such as news, finance and biology domain. However, scientific domain still lacks event extraction research, including comprehensive datasets and corresponding methods. Compared to other domains, scientific domain presents two characteristics: denser nuggets and more complex events. To solve the above problem, considering these two characteristics, we first construct SciEvents, a large-scale multi-event document-level dataset with a schema tailored for scientific domain. It has 2,508 documents and 24,381 events under refined annotation and quality control. Then, we propose EXCEEDS, a novel end-to-end scientific event extraction framework by storing dense nuggets in a grid matrix and simplifying complex event extraction into a dot construction and connection task. Experimental results demonstrate state-of-the-art performances of EXCEEDS on SciEvents. Additionally, we release SciEvents and EXCEEDS on GitHub.
Abstract:While large language models (LLMs) have made notable advancements in natural language processing, they continue to struggle with processing extensive text. Memory mechanism offers a flexible solution for managing long contexts, utilizing techniques such as compression, summarization, and structuring to facilitate nuanced and efficient handling of large volumes of text. However, existing techniques face challenges with static knowledge integration, leading to insufficient adaptation to task-specific needs and missing multi-segmentation relationships, which hinders the dynamic reorganization and logical combination of relevant segments during the response process. To address these issues, we introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), incorporating a dual-structured memory pool. This pool synergizes static textual content with structured graph guidance, fostering a reflective trial-and-error approach for navigating and identifying relevant segments. Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM enhanced performance compared to existing approaches.
Abstract:Long sequence modeling has gained broad interest as large language models (LLMs) continue to advance. Recent research has identified that a large portion of hidden states within the key-value caches of Transformer models can be discarded (also termed evicted) without affecting the perplexity performance in generating long sequences. However, we show that these methods, despite preserving perplexity performance, often drop information that is important for solving downstream tasks, a problem which we call information neglect. To address this issue, we introduce Chunked Instruction-aware State Eviction (CItruS), a novel modeling technique that integrates the attention preferences useful for a downstream task into the eviction process of hidden states. In addition, we design a method for chunked sequence processing to further improve efficiency. Our training-free method exhibits superior performance on long sequence comprehension and retrieval tasks over several strong baselines under the same memory budget, while preserving language modeling perplexity.
Abstract:Recent studies have demonstrated that In-Context Learning (ICL), through the use of specific demonstrations, can align Large Language Models (LLMs) with human preferences known as In-Context Alignment (ICA), indicating that models can comprehend human instructions without requiring parameter adjustments. However, the exploration of the mechanism and applicability of ICA remains limited. In this paper, we begin by dividing the context text used in ICA into three categories: format, system prompt, and example. Through ablation experiments, we investigate the effectiveness of each part in enabling ICA to function effectively. We then examine how variants in these parts impact the model's alignment performance. Our findings indicate that the example part is crucial for enhancing the model's alignment capabilities, with changes in examples significantly affecting alignment performance. We also conduct a comprehensive evaluation of ICA's zero-shot capabilities in various alignment tasks. The results indicate that compared to parameter fine-tuning methods, ICA demonstrates superior performance in knowledge-based tasks and tool-use tasks. However, it still exhibits certain limitations in areas such as multi-turn dialogues and instruction following.
Abstract:Data augmentation is an effective way to diversify corpora in machine translation, but previous methods may introduce semantic inconsistency between original and augmented data because of irreversible operations and random subword sampling procedures. To generate both symbolically diverse and semantically consistent augmentation data, we propose Deterministic Reversible Data Augmentation (DRDA), a simple but effective data augmentation method for neural machine translation. DRDA adopts deterministic segmentations and reversible operations to generate multi-granularity subword representations and pulls them closer together with multi-view techniques. With no extra corpora or model changes required, DRDA outperforms strong baselines on several translation tasks with a clear margin (up to 4.3 BLEU gain over Transformer) and exhibits good robustness in noisy, low-resource, and cross-domain datasets.