Abstract:This paper investigates an intriguing task of Multi-modal Retrieval Augmented Multi-modal Generation (M$^2$RAG). This task requires foundation models to browse multi-modal web pages, with mixed text and images, and generate multi-modal responses for solving user queries, which exhibits better information density and readability. Given the early researching stage of M$^2$RAG task, there is a lack of systematic studies and analysis. To fill this gap, we construct a benchmark for M$^2$RAG task, equipped with a suite of text-modal metrics and multi-modal metrics to analyze the capabilities of existing foundation models. Besides, we also propose several effective methods for foundation models to accomplish this task, based on the comprehensive evaluation results on our benchmark. Extensive experimental results reveal several intriguing phenomena worth further research.
Abstract:Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.