Abstract:Network services are increasingly managed by considering chained-up virtual network functions and relevant traffic flows, known as the Service Function Chains (SFCs). To deal with sequential arrivals of SFCs in an online fashion, we must consider two closely-coupled problems - an SFC placement problem that maps SFCs to servers/links in the network and an SFC scheduling problem that determines when each SFC is executed. Solving the whole SFC problem targeting these two optimizations jointly is extremely challenging. In this paper, we propose a novel network diffuser using conditional generative modeling for this SFC placing-scheduling optimization. Recent advances in generative AI and diffusion models have made it possible to generate high-quality images/videos and decision trajectories from language description. We formulate the SFC optimization as a problem of generating a state sequence for planning and perform graph diffusion on the state trajectories to enable extraction of SFC decisions, with SFC optimization constraints and objectives as conditions. To address the lack of demonstration data due to NP-hardness and exponential problem space of the SFC optimization, we also propose a novel and somewhat maverick approach -- Rather than solving instances of this difficult optimization, we start with randomly-generated solutions as input, and then determine appropriate SFC optimization problems that render these solutions feasible. This inverse demonstration enables us to obtain sufficient expert demonstrations, i.e., problem-solution pairs, through further optimization. In our numerical evaluations, the proposed network diffuser outperforms learning and heuristic baselines, by $\sim$20\% improvement in SFC reward and $\sim$50\% reduction in SFC waiting time and blocking rate.
Abstract:This paper investigates an intriguing task of Multi-modal Retrieval Augmented Multi-modal Generation (M$^2$RAG). This task requires foundation models to browse multi-modal web pages, with mixed text and images, and generate multi-modal responses for solving user queries, which exhibits better information density and readability. Given the early researching stage of M$^2$RAG task, there is a lack of systematic studies and analysis. To fill this gap, we construct a benchmark for M$^2$RAG task, equipped with a suite of text-modal metrics and multi-modal metrics to analyze the capabilities of existing foundation models. Besides, we also propose several effective methods for foundation models to accomplish this task, based on the comprehensive evaluation results on our benchmark. Extensive experimental results reveal several intriguing phenomena worth further research.
Abstract:Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.
Abstract:Evaluating the output of Large Language Models (LLMs) is one of the most critical aspects of building a performant compound AI system. Since the output from LLMs propagate to downstream steps, identifying LLM errors is crucial to system performance. A common task for LLMs in AI systems is tool use. While there are several benchmark environments for evaluating LLMs on this task, they typically only give a success rate without any explanation of the failure cases. To solve this problem, we introduce SpecTool, a new benchmark to identify error patterns in LLM output on tool-use tasks. Our benchmark data set comprises of queries from diverse environments that can be used to test for the presence of seven newly characterized error patterns. Using SPECTOOL , we show that even the most prominent LLMs exhibit these error patterns in their outputs. Researchers can use the analysis and insights from SPECTOOL to guide their error mitigation strategies.
Abstract:Federated learning (FL) has become a cornerstone in decentralized learning, where, in many scenarios, the incoming data distribution will change dynamically over time, introducing continuous learning (CL) problems. This continual federated learning (CFL) task presents unique challenges, particularly regarding catastrophic forgetting and non-IID input data. Existing solutions include using a replay buffer to store historical data or leveraging generative adversarial networks. Nevertheless, motivated by recent advancements in the diffusion model for generative tasks, this paper introduces DCFL, a novel framework tailored to address the challenges of CFL in dynamic distributed learning environments. Our approach harnesses the power of the conditional diffusion model to generate synthetic historical data at each local device during communication, effectively mitigating latent shifts in dynamic data distribution inputs. We provide the convergence bound for the proposed CFL framework and demonstrate its promising performance across multiple datasets, showcasing its effectiveness in tackling the complexities of CFL tasks.
Abstract:Forests offer essential resources and services to humanity, yet preserving and restoring them presents challenges, particularly due to the limited availability of actionable data, especially in hard-to-reach areas like forest canopies. Accessibility continues to pose a challenge for biologists collecting data in forest environments, often requiring them to invest significant time and energy in climbing trees to place sensors. This operation not only consumes resources but also exposes them to danger. Efforts in robotics have been directed towards accessing the tree canopy using robots. A swarm of drones has showcased autonomous navigation through the canopy, maneuvering with agility and evading tree collisions, all aimed at mapping the area and collecting data. However, relying solely on free-flying drones has proven insufficient for data collection. Flying drones within the canopy generates loud noise, disturbing animals and potentially corrupting the data. Additionally, commercial drones often have limited autonomy for dexterous tasks where aerial physical interaction could be required, further complicating data acquisition efforts. Aerial deployed sensor placement methods such as bio-gliders and sensor shooting have proven effective for data collection within the lower canopy. However, these methods face challenges related to retrieving the data and sensors, often necessitating human intervention.
Abstract:We introduce the Principled Reasoning and Acting (PRAct) framework, a novel method for learning and enforcing action principles from trajectory data. Central to our approach is the use of text gradients from a reflection and optimization engine to derive these action principles. To adapt action principles to specific task requirements, we propose a new optimization framework, Reflective Principle Optimization (RPO). After execution, RPO employs a reflector to critique current action principles and an optimizer to update them accordingly. We develop the RPO framework under two scenarios: Reward-RPO, which uses environmental rewards for reflection, and Self-RPO, which conducts self-reflection without external rewards. Additionally, two RPO methods, RPO-Traj and RPO-Batch, is introduced to adapt to different settings. Experimental results across four environments demonstrate that the PRAct agent, leveraging the RPO framework, effectively learns and applies action principles to enhance performance.
Abstract:Deep Reinforcement Learning (DRL) algorithms have achieved great success in solving many challenging tasks while their black-box nature hinders interpretability and real-world applicability, making it difficult for human experts to interpret and understand DRL policies. Existing works on interpretable reinforcement learning have shown promise in extracting decision tree (DT) based policies from DRL policies with most focus on the single-agent settings while prior attempts to introduce DT policies in multi-agent scenarios mainly focus on heuristic designs which do not provide any quantitative guarantees on the expected return. In this paper, we establish an upper bound on the return gap between the oracle expert policy and an optimal decision tree policy. This enables us to recast the DT extraction problem into a novel non-euclidean clustering problem over the local observation and action values space of each agent, with action values as cluster labels and the upper bound on the return gap as clustering loss. Both the algorithm and the upper bound are extended to multi-agent decentralized DT extractions by an iteratively-grow-DT procedure guided by an action-value function conditioned on the current DTs of other agents. Further, we propose the Return-Gap-Minimization Decision Tree (RGMDT) algorithm, which is a surprisingly simple design and is integrated with reinforcement learning through the utilization of a novel Regularized Information Maximization loss. Evaluations on tasks like D4RL show that RGMDT significantly outperforms heuristic DT-based baselines and can achieve nearly optimal returns under given DT complexity constraints (e.g., maximum number of DT nodes).
Abstract:Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
Abstract:Event extraction has gained extensive research attention due to its broad range of applications. However, the current mainstream evaluation method for event extraction relies on token-level exact match, which misjudges numerous semantic-level correct cases. This reliance leads to a significant discrepancy between the evaluated performance of models under exact match criteria and their real performance. To address this problem, we propose RAEE, an automatic evaluation framework that accurately assesses event extraction results at semantic-level instead of token-level. Specifically, RAEE leverages Large Language Models (LLMs) as automatic evaluation agents, incorporating chain-of-thought prompting and an adaptive mechanism to achieve interpretable and adaptive evaluations for precision and recall of triggers and arguments. Extensive experimental results demonstrate that: (1) RAEE achieves a very high correlation with the human average; (2) after reassessing 14 models, including advanced LLMs, on 10 datasets, there is a significant performance gap between exact match and RAEE. The exact match evaluation significantly underestimates the performance of existing event extraction models, particularly underestimating the capabilities of LLMs; (3) fine-grained analysis under RAEE evaluation reveals insightful phenomena worth further exploration. The evaluation toolkit of our proposed RAEE will be publicly released.