Abstract:Source-free domain adaptation is a crucial machine learning topic, as it contains numerous applications in the real world, particularly with respect to data privacy. Existing approaches predominantly focus on Euclidean data, such as images and videos, while the exploration of non-Euclidean graph data remains scarce. Recent graph neural network (GNN) approaches can suffer from serious performance decline due to domain shift and label scarcity in source-free adaptation scenarios. In this study, we propose a novel method named Graph Diffusion-based Alignment with Jigsaw (GALA), tailored for source-free graph domain adaptation. To achieve domain alignment, GALA employs a graph diffusion model to reconstruct source-style graphs from target data. Specifically, a score-based graph diffusion model is trained using source graphs to learn the generative source styles. Then, we introduce perturbations to target graphs via a stochastic differential equation instead of sampling from a prior, followed by the reverse process to reconstruct source-style graphs. We feed the source-style graphs into an off-the-shelf GNN and introduce class-specific thresholds with curriculum learning, which can generate accurate and unbiased pseudo-labels for target graphs. Moreover, we develop a simple yet effective graph-mixing strategy named graph jigsaw to combine confident graphs and unconfident graphs, which can enhance generalization capabilities and robustness via consistency learning. Extensive experiments on benchmark datasets validate the effectiveness of GALA.
Abstract:Supervised fine-tuning (SFT) is crucial in adapting large language models (LLMs) to a specific domain or task. However, only a limited amount of labeled data is available in practical applications, which poses a severe challenge for SFT in yielding satisfactory results. Therefore, a data-efficient framework that can fully exploit labeled and unlabeled data for LLM fine-tuning is highly anticipated. Towards this end, we introduce a semi-supervised fine-tuning framework named SemiEvol for LLM adaptation from a propagate-and-select manner. For knowledge propagation, SemiEvol adopts a bi-level approach, propagating knowledge from labeled data to unlabeled data through both in-weight and in-context methods. For knowledge selection, SemiEvol incorporates a collaborative learning mechanism, selecting higher-quality pseudo-response samples. We conducted experiments using GPT-4o-mini and Llama-3.1 on seven general or domain-specific datasets, demonstrating significant improvements in model performance on target data. Furthermore, we compared SemiEvol with SFT and self-evolution methods, highlighting its practicality in hybrid data scenarios.
Abstract:Graph domain adaptation has recently enabled knowledge transfer across different graphs. However, without the semantic information on target graphs, the performance on target graphs is still far from satisfactory. To address the issue, we study the problem of active graph domain adaptation, which selects a small quantitative of informative nodes on the target graph for extra annotation. This problem is highly challenging due to the complicated topological relationships and the distribution discrepancy across graphs. In this paper, we propose a novel approach named Dual Consistency Delving with Topological Uncertainty (DELTA) for active graph domain adaptation. Our DELTA consists of an edge-oriented graph subnetwork and a path-oriented graph subnetwork, which can explore topological semantics from complementary perspectives. In particular, our edge-oriented graph subnetwork utilizes the message passing mechanism to learn neighborhood information, while our path-oriented graph subnetwork explores high-order relationships from substructures. To jointly learn from two subnetworks, we roughly select informative candidate nodes with the consideration of consistency across two subnetworks. Then, we aggregate local semantics from its K-hop subgraph based on node degrees for topological uncertainty estimation. To overcome potential distribution shifts, we compare target nodes and their corresponding source nodes for discrepancy scores as an additional component for fine selection. Extensive experiments on benchmark datasets demonstrate that DELTA outperforms various state-of-the-art approaches.
Abstract:Graph neural networks (GNNs) have achieved impressive performance in graph domain adaptation. However, extensive source graphs could be unavailable in real-world scenarios due to privacy and storage concerns. To this end, we investigate an underexplored yet practical problem of source-free graph domain adaptation, which transfers knowledge from source models instead of source graphs to a target domain. To solve this problem, we introduce a novel GNN-based approach called Rank and Align (RNA), which ranks graph similarities with spectral seriation for robust semantics learning, and aligns inharmonic graphs with harmonic graphs which close to the source domain for subgraph extraction. In particular, to overcome label scarcity, we employ the spectral seriation algorithm to infer the robust pairwise rankings, which can guide semantic learning using a similarity learning objective. To depict distribution shifts, we utilize spectral clustering and the silhouette coefficient to detect harmonic graphs, which the source model can easily classify. To reduce potential domain discrepancy, we extract domain-invariant subgraphs from inharmonic graphs by an adversarial edge sampling process, which guides the invariant learning of GNNs. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our proposed RNA.
Abstract:Graph pooling has gained attention for its ability to obtain effective node and graph representations for various downstream tasks. Despite the recent surge in graph pooling approaches, there is a lack of standardized experimental settings and fair benchmarks to evaluate their performance. To address this issue, we have constructed a comprehensive benchmark that includes 15 graph pooling methods and 21 different graph datasets. This benchmark systematically assesses the performance of graph pooling methods in three dimensions, i.e., effectiveness, robustness, and generalizability. We first evaluate the performance of these graph pooling approaches across different tasks including graph classification, graph regression and node classification. Then, we investigate their performance under potential noise attacks and out-of-distribution shifts in real-world scenarios. We also involve detailed efficiency analysis and parameter analysis. Extensive experiments validate the strong capability and applicability of graph pooling approaches in various scenarios, which can provide valuable insights and guidance for deep geometric learning research. The source code of our benchmark is available at https://github.com/goose315/Graph_Pooling_Benchmark.
Abstract:In recent years, deep learning on graphs has achieved remarkable success in various domains. However, the reliance on annotated graph data remains a significant bottleneck due to its prohibitive cost and time-intensive nature. To address this challenge, self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress. SSL enables machine learning models to produce informative representations from unlabeled graph data, reducing the reliance on expensive labeled data. While SSL on graphs has witnessed widespread adoption, one critical component, Graph Contrastive Learning (GCL), has not been thoroughly investigated in the existing literature. Thus, this survey aims to fill this gap by offering a dedicated survey on GCL. We provide a comprehensive overview of the fundamental principles of GCL, including data augmentation strategies, contrastive modes, and contrastive optimization objectives. Furthermore, we explore the extensions of GCL to other aspects of data-efficient graph learning, such as weakly supervised learning, transfer learning, and related scenarios. We also discuss practical applications spanning domains such as drug discovery, genomics analysis, recommender systems, and finally outline the challenges and potential future directions in this field.
Abstract:Automatic International Classification of Diseases (ICD) coding plays a crucial role in the extraction of relevant information from clinical notes for proper recording and billing. One of the most important directions for boosting the performance of automatic ICD coding is modeling ICD code relations. However, current methods insufficiently model the intricate relationships among ICD codes and often overlook the importance of context in clinical notes. In this paper, we propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations. Our approach, unlike existing methods, employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations. We evaluate our approach on six public ICD coding datasets and the experimental results demonstrate the effectiveness of our approach compared to state-of-the-art baselines.
Abstract:The development of electronic health records (EHR) systems has enabled the collection of a vast amount of digitized patient data. However, utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics. With the advancements in machine learning techniques, deep learning has demonstrated its superiority in various applications, including healthcare. This survey systematically reviews recent advances in deep learning-based predictive models using EHR data. Specifically, we begin by introducing the background of EHR data and providing a mathematical definition of the predictive modeling task. We then categorize and summarize predictive deep models from multiple perspectives. Furthermore, we present benchmarks and toolkits relevant to predictive modeling in healthcare. Finally, we conclude this survey by discussing open challenges and suggesting promising directions for future research.
Abstract:Graph-structured data, prevalent in domains ranging from social networks to biochemical analysis, serve as the foundation for diverse real-world systems. While graph neural networks demonstrate proficiency in modeling this type of data, their success is often reliant on significant amounts of labeled data, posing a challenge in practical scenarios with limited annotation resources. To tackle this problem, tremendous efforts have been devoted to enhancing graph machine learning performance under low-resource settings by exploring various approaches to minimal supervision. In this paper, we introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier, and present the first survey that summarizes the current progress of DEGL. We initiate by highlighting the challenges inherent in training models with large labeled data, paving the way for our exploration into DEGL. Next, we systematically review recent advances on this topic from several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning. Also, we state promising directions for future research, contributing to the evolution of graph machine learning.
Abstract:Pretraining has proven to be a powerful technique in natural language processing (NLP), exhibiting remarkable success in various NLP downstream tasks. However, in the medical domain, existing pretrained models on electronic health records (EHR) fail to capture the hierarchical nature of EHR data, limiting their generalization capability across diverse downstream tasks using a single pretrained model. To tackle this challenge, this paper introduces a novel, general, and unified pretraining framework called MEDHMP, specifically designed for hierarchically multimodal EHR data. The effectiveness of the proposed MEDHMP is demonstrated through experimental results on eight downstream tasks spanning three levels. Comparisons against eighteen baselines further highlight the efficacy of our approach.