Abstract:Multimodal Large Language Model (MLLM) have demonstrated strong generalization capabilities across diverse distributions and tasks, largely due to extensive pre-training datasets. Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks. However, during fine-tuning, MLLM often faces the risk of forgetting knowledge acquired during pre-training, which can result in a decline in generalization abilities. To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions, based on frozen pre-trained weight magnitude and accumulated fine-tuning gradient values. We further apply an importance-aware weight allocation strategy, selectively updating relatively important parameters for downstream tasks. We conduct empirical evaluations on both image captioning and visual question-answering tasks using various MLLM architectures. The comprehensive experimental analysis demonstrates the effectiveness of the proposed solution, highlighting the efficiency of the crucial modules in enhancing downstream specialization performance while mitigating generalization degradation in MLLM Fine-Tuning.
Abstract:Personalized Federated Graph Learning (pFGL) facilitates the decentralized training of Graph Neural Networks (GNNs) without compromising privacy while accommodating personalized requirements for non-IID participants. In cross-domain scenarios, structural heterogeneity poses significant challenges for pFGL. Nevertheless, previous pFGL methods incorrectly share non-generic knowledge globally and fail to tailor personalized solutions locally under domain structural shift. We innovatively reveal that the spectral nature of graphs can well reflect inherent domain structural shifts. Correspondingly, our method overcomes it by sharing generic spectral knowledge. Moreover, we indicate the biased message-passing schemes for graph structures and propose the personalized preference module. Combining both strategies, we propose our pFGL framework FedSSP which Shares generic Spectral knowledge while satisfying graph Preferences. Furthermore, We perform extensive experiments on cross-dataset and cross-domain settings to demonstrate the superiority of our framework. The code is available at https://github.com/OakleyTan/FedSSP.
Abstract:Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: \textit{Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution?} In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: \textbf{(1) high-performing}, achieving superior results on MMLU with accuracy at $84.50\%$ and on HumanEval with pass@1 at $89.90\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\%$ accuracy drop.
Abstract:Recent advancements in large language model (LLM)-powered agents have shown that collective intelligence can significantly outperform individual capabilities, largely attributed to the meticulously designed inter-agent communication topologies. Though impressive in performance, existing multi-agent pipelines inherently introduce substantial token overhead, as well as increased economic costs, which pose challenges for their large-scale deployments. In response to this challenge, we propose an economical, simple, and robust multi-agent communication framework, termed $\texttt{AgentPrune}$, which can seamlessly integrate into mainstream multi-agent systems and prunes redundant or even malicious communication messages. Technically, $\texttt{AgentPrune}$ is the first to identify and formally define the \textit{communication redundancy} issue present in current LLM-based multi-agent pipelines, and efficiently performs one-shot pruning on the spatial-temporal message-passing graph, yielding a token-economic and high-performing communication topology. Extensive experiments across six benchmarks demonstrate that $\texttt{AgentPrune}$ \textbf{(I)} achieves comparable results as state-of-the-art topologies at merely $\$5.6$ cost compared to their $\$43.7$, \textbf{(II)} integrates seamlessly into existing multi-agent frameworks with $28.1\%\sim72.8\%\downarrow$ token reduction, and \textbf{(III)} successfully defend against two types of agent-based adversarial attacks with $3.5\%\sim10.8\%\uparrow$ performance boost.
Abstract:Federated graph learning collaboratively learns a global graph neural network with distributed graphs, where the non-independent and identically distributed property is one of the major challenges. Most relative arts focus on traditional distributed tasks like images and voices, incapable of graph structures. This paper firstly reveals that local client distortion is brought by both node-level semantics and graph-level structure. First, for node-level semantics, we find that contrasting nodes from distinct classes is beneficial to provide a well-performing discrimination. We pull the local node towards the global node of the same class and push it away from the global node of different classes. Second, we postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships. However, aligning each node with adjacent nodes hinders discrimination due to the potential class inconsistency. We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model, which preserves the structural information and discriminability of the local model. Empirical results on three graph datasets manifest the superiority of the proposed method over its counterparts.
Abstract:EpiLearn is a Python toolkit developed for modeling, simulating, and analyzing epidemic data. Although there exist several packages that also deal with epidemic modeling, they are often restricted to mechanistic models or traditional statistical tools. As machine learning continues to shape the world, the gap between these packages and the latest models has become larger. To bridge the gap and inspire innovative research in epidemic modeling, EpiLearn not only provides support for evaluating epidemic models based on machine learning, but also incorporates comprehensive tools for analyzing epidemic data, such as simulation, visualization, transformations, etc. For the convenience of both epidemiologists and data scientists, we provide a unified framework for training and evaluation of epidemic models on two tasks: Forecasting and Source Detection. To facilitate the development of new models, EpiLearn follows a modular design, making it flexible and easy to use. In addition, an interactive web application is also developed to visualize the real-world or simulated epidemic data. Our package is available at https://github.com/Emory-Melody/EpiLearn.
Abstract:Since the onset of the COVID-19 pandemic, there has been a growing interest in studying epidemiological models. Traditional mechanistic models mathematically describe the transmission mechanisms of infectious diseases. However, they often fall short when confronted with the growing challenges of today. Consequently, Graph Neural Networks (GNNs) have emerged as a progressively popular tool in epidemic research. In this paper, we endeavor to furnish a comprehensive review of GNNs in epidemic tasks and highlight potential future directions. To accomplish this objective, we introduce hierarchical taxonomies for both epidemic tasks and methodologies, offering a trajectory of development within this domain. For epidemic tasks, we establish a taxonomy akin to those typically employed within the epidemic domain. For methodology, we categorize existing work into \textit{Neural Models} and \textit{Hybrid Models}. Following this, we perform an exhaustive and systematic examination of the methodologies, encompassing both the tasks and their technical details. Furthermore, we discuss the limitations of existing methods from diverse perspectives and systematically propose future research directions. This survey aims to bridge literature gaps and promote the progression of this promising field. We hope that it will facilitate synergies between the communities of GNNs and epidemiology, and contribute to their collective progress.
Abstract:Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties. Recently, with the popularity of federated learning, an influx of approaches have delivered towards different realistic challenges. In this survey, we provide a systematic overview of the important and recent developments of research on federated learning. Firstly, we introduce the study history and terminology definition of this area. Then, we comprehensively review three basic lines of research: generalization, robustness, and fairness, by introducing their respective background concepts, task settings, and main challenges. We also offer a detailed overview of representative literature on both methods and datasets. We further benchmark the reviewed methods on several well-known datasets. Finally, we point out several open issues in this field and suggest opportunities for further research. We also provide a public website to continuously track developments in this fast advancing field: https://github.com/WenkeHuang/MarsFL.