Abstract:Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
Abstract:Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .
Abstract:Underwater imaging often suffers from significant visual degradation, which limits its suitability for subsequent applications. While recent underwater image enhancement (UIE) methods rely on the current advances in deep neural network architecture designs, there is still considerable room for improvement in terms of cross-scene robustness and computational efficiency. Diffusion models have shown great success in image generation, prompting us to consider their application to UIE tasks. However, directly applying them to UIE tasks will pose two challenges, \textit{i.e.}, high computational budget and color unbalanced perturbations. To tackle these issues, we propose DiffColor, a distribution-aware diffusion and cross-spectral refinement model for efficient UIE. Instead of diffusing in the raw pixel space, we transfer the image into the wavelet domain to obtain such low-frequency and high-frequency spectra, it inherently reduces the image spatial dimensions by half after each transformation. Unlike single-noise image restoration tasks, underwater imaging exhibits unbalanced channel distributions due to the selective absorption of light by water. To address this, we design the Global Color Correction (GCC) module to handle the diverse color shifts, thereby avoiding potential global degradation disturbances during the denoising process. For the sacrificed image details caused by underwater scattering, we further present the Cross-Spectral Detail Refinement (CSDR) to enhance the high-frequency details, which are integrated with the low-frequency signal as input conditions for guiding the diffusion. This way not only ensures the high-fidelity of sampled content but also compensates for the sacrificed details. Comprehensive experiments demonstrate the superior performance of DiffColor over state-of-the-art methods in both quantitative and qualitative evaluations.
Abstract:Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness. To address this, link prediction or knowledge graph completion (KGC) aims to infer missing new facts based on existing facts in KGs. Previous knowledge graph embedding models are limited in their ability to capture expressive features, especially when compared to deeper, multi-layer models. These approaches also assign a single static embedding to each entity and relation, disregarding the fact that entities and relations can exhibit different behaviors in varying graph contexts. Due to complex context over a fact triple of a KG, existing methods have to leverage complex non-linear context encoder, like transformer, to project entity and relation into low dimensional representations, resulting in high computation cost. To overcome these limitations, we propose Triple Receptance Perception (TRP) architecture to model sequential information, enabling the learning of dynamic context of entities and relations. Then we use tensor decomposition to calculate triple scores, providing robust relational decoding capabilities. This integration allows for more expressive representations. Experiments on benchmark datasets such as YAGO3-10, UMLS, FB15k, and FB13 in link prediction and triple classification tasks demonstrate that our method performs better than several state-of-the-art models, proving the effectiveness of the integration.
Abstract:When given two similar images, humans identify their differences by comparing the appearance ({\it e.g., color, texture}) with the help of semantics ({\it e.g., objects, relations}). However, mainstream change detection models adopt a supervised training paradigm, where the annotated binary change map is the main constraint. Thus, these methods primarily emphasize the difference-aware features between bi-temporal images and neglect the semantic understanding of the changed landscapes, which undermines the accuracy in the presence of noise and illumination variations. To this end, this paper explores incorporating semantic priors to improve the ability to detect changes. Firstly, we propose a Semantic-Aware Change Detection network, namely SA-CDNet, which transfers the common knowledge of the visual foundation models ({\it i.e., FastSAM}) to change detection. Inspired by the human visual paradigm, a novel dual-stream feature decoder is derived to distinguish changes by combining semantic-aware features and difference-aware features. Secondly, we design a single-temporal semantic pre-training strategy to enhance the semantic understanding of landscapes, which brings further increments. Specifically, we construct pseudo-change detection data from public single-temporal remote sensing segmentation datasets for large-scale pre-training, where an extra branch is also introduced for the proxy semantic segmentation task. Experimental results on five challenging benchmarks demonstrate the superiority of our method over the existing state-of-the-art methods. The code is available at \href{https://github.com/thislzm/SA-CD}{SA-CD}.
Abstract:The mesoscopic level serves as a bridge between the macroscopic and microscopic worlds, addressing gaps overlooked by both. Image manipulation localization (IML), a crucial technique to pursue truth from fake images, has long relied on low-level (microscopic-level) traces. However, in practice, most tampering aims to deceive the audience by altering image semantics. As a result, manipulation commonly occurs at the object level (macroscopic level), which is equally important as microscopic traces. Therefore, integrating these two levels into the mesoscopic level presents a new perspective for IML research. Inspired by this, our paper explores how to simultaneously construct mesoscopic representations of micro and macro information for IML and introduces the Mesorch architecture to orchestrate both. Specifically, this architecture i) combines Transformers and CNNs in parallel, with Transformers extracting macro information and CNNs capturing micro details, and ii) explores across different scales, assessing micro and macro information seamlessly. Additionally, based on the Mesorch architecture, the paper introduces two baseline models aimed at solving IML tasks through mesoscopic representation. Extensive experiments across four datasets have demonstrated that our models surpass the current state-of-the-art in terms of performance, computational complexity, and robustness.
Abstract:Object goal navigation (ObjectNav) is a fundamental task of embodied AI that requires the agent to find a target object in unseen environments. This task is particularly challenging as it demands both perceptual and cognitive processes for effective perception and decision-making. While perception has gained significant progress powered by the rapidly developed visual foundation models, the progress on the cognitive side remains limited to either implicitly learning from massive navigation demonstrations or explicitly leveraging pre-defined heuristic rules. Inspired by neuroscientific evidence that humans consistently update their cognitive states while searching for objects in unseen environments, we present CogNav, which attempts to model this cognitive process with the help of large language models. Specifically, we model the cognitive process with a finite state machine composed of cognitive states ranging from exploration to identification. The transitions between the states are determined by a large language model based on an online built heterogeneous cognitive map containing spatial and semantic information of the scene being explored. Extensive experiments on both synthetic and real-world environments demonstrate that our cognitive modeling significantly improves ObjectNav efficiency, with human-like navigation behaviors. In an open-vocabulary and zero-shot setting, our method advances the SOTA of the HM3D benchmark from 69.3% to 87.2%. The code and data will be released.
Abstract:Recent trends in cell segmentation have shifted towards universal models to handle diverse cell morphologies and imaging modalities. However, for continuously emerging cell types and imaging techniques, these models still require hundreds or thousands of annotated cells for fine-tuning. We introduce CellSeg1, a practical solution for segmenting cells of arbitrary morphology and modality with a few dozen cell annotations in 1 image. By adopting Low-Rank Adaptation of the Segment Anything Model (SAM), we achieve robust cell segmentation. Tested on 19 diverse cell datasets, CellSeg1 trained on 1 image achieved 0.81 average mAP at 0.5 IoU, performing comparably to existing models trained on over 500 images. It also demonstrated superior generalization in cross-dataset tests on TissueNet. We found that high-quality annotation of a few dozen densely packed cells of varied sizes is key to effective segmentation. CellSeg1 provides an efficient solution for cell segmentation with minimal annotation effort.
Abstract:Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications.
Abstract:Aligning diffusion models with downstream objectives is essential for their practical applications. However, standard alignment methods often struggle with step generalization when directly applied to few-step diffusion models, leading to inconsistent performance across different denoising step scenarios. To address this, we introduce Stepwise Diffusion Policy Optimization (SDPO), a novel alignment method tailored for few-step diffusion models. Unlike prior approaches that rely on a single sparse reward from only the final step of each denoising trajectory for trajectory-level optimization, SDPO incorporates dense reward feedback at every intermediate step. By learning the differences in dense rewards between paired samples, SDPO facilitates stepwise optimization of few-step diffusion models, ensuring consistent alignment across all denoising steps. To promote stable and efficient training, SDPO introduces an online reinforcement learning framework featuring several novel strategies designed to effectively exploit the stepwise granularity of dense rewards. Experimental results demonstrate that SDPO consistently outperforms prior methods in reward-based alignment across diverse step configurations, underscoring its robust step generalization capabilities. Code is avaliable at https://github.com/ZiyiZhang27/sdpo.