Abstract:Proteins, essential to biological systems, perform functions intricately linked to their three-dimensional structures. Understanding the relationship between protein structures and their amino acid sequences remains a core challenge in protein modeling. While traditional protein foundation models benefit from pre-training on vast unlabeled datasets, they often struggle to capture critical co-evolutionary information, which evolutionary-based methods excel at. In this study, we introduce a novel pre-training strategy for protein foundation models that emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features from sequence data. Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability, outperforming established baselines of similar size, including the ESM model, across diverse downstream tasks. Experimental results confirm the model's effectiveness in integrating co-evolutionary information, marking a significant step forward in protein sequence-based modeling.
Abstract:Although Chinese calligraphy generation has achieved style transfer, generating calligraphy by specifying the calligrapher, font, and character style remains challenging. To address this, we propose a new Chinese calligraphy generation model 'Moyun' , which replaces the Unet in the Diffusion model with Vision Mamba and introduces the TripleLabel control mechanism to achieve controllable calligraphy generation. The model was tested on our large-scale dataset 'Mobao' of over 1.9 million images, and the results demonstrate that 'Moyun' can effectively control the generation process and produce calligraphy in the specified style. Even for calligraphy the calligrapher has not written, 'Moyun' can generate calligraphy that matches the style of the calligrapher.
Abstract:Detecting cognitive biases in large language models (LLMs) is a fascinating task that aims to probe the existing cognitive biases within these models. Current methods for detecting cognitive biases in language models generally suffer from incomplete detection capabilities and a restricted range of detectable bias types. To address this issue, we introduced the 'MindScope' dataset, which distinctively integrates static and dynamic elements. The static component comprises 5,170 open-ended questions spanning 72 cognitive bias categories. The dynamic component leverages a rule-based, multi-agent communication framework to facilitate the generation of multi-round dialogues. This framework is flexible and readily adaptable for various psychological experiments involving LLMs. In addition, we introduce a multi-agent detection method applicable to a wide range of detection tasks, which integrates Retrieval-Augmented Generation (RAG), competitive debate, and a reinforcement learning-based decision module. Demonstrating substantial effectiveness, this method has shown to improve detection accuracy by as much as 35.10% compared to GPT-4. Codes and appendix are available at https://github.com/2279072142/MindScope.
Abstract:With the proliferation of Large Language Models (LLMs) in diverse domains, there is a particular need for unified evaluation standards in clinical medical scenarios, where models need to be examined very thoroughly. We present CliMedBench, a comprehensive benchmark with 14 expert-guided core clinical scenarios specifically designed to assess the medical ability of LLMs across 7 pivot dimensions. It comprises 33,735 questions derived from real-world medical reports of top-tier tertiary hospitals and authentic examination exercises. The reliability of this benchmark has been confirmed in several ways. Subsequent experiments with existing LLMs have led to the following findings: (i) Chinese medical LLMs underperform on this benchmark, especially where medical reasoning and factual consistency are vital, underscoring the need for advances in clinical knowledge and diagnostic accuracy. (ii) Several general-domain LLMs demonstrate substantial potential in medical clinics, while the limited input capacity of many medical LLMs hinders their practical use. These findings reveal both the strengths and limitations of LLMs in clinical scenarios and offer critical insights for medical research.
Abstract:Preference-Based reinforcement learning (PBRL) learns directly from the preferences of human teachers regarding agent behaviors without needing meticulously designed reward functions. However, existing PBRL methods often learn primarily from explicit preferences, neglecting the possibility that teachers may choose equal preferences. This neglect may hinder the understanding of the agent regarding the task perspective of the teacher, leading to the loss of important information. To address this issue, we introduce the Equal Preference Learning Task, which optimizes the neural network by promoting similar reward predictions when the behaviors of two agents are labeled as equal preferences. Building on this task, we propose a novel PBRL method, Multi-Type Preference Learning (MTPL), which allows simultaneous learning from equal preferences while leveraging existing methods for learning from explicit preferences. To validate our approach, we design experiments applying MTPL to four existing state-of-the-art baselines across ten locomotion and robotic manipulation tasks in the DeepMind Control Suite. The experimental results indicate that simultaneous learning from both equal and explicit preferences enables the PBRL method to more comprehensively understand the feedback from teachers, thereby enhancing feedback efficiency.
Abstract:Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.
Abstract:Although current text-guided music generation technology can cope with simple creative scenarios, achieving fine-grained control over individual text-modality conditions remains challenging as user demands become more intricate. Accordingly, we introduce the TEAcher Adapter (TEAdapter), a compact plugin designed to guide the generation process with diverse control information provided by users. In addition, we explore the controllable generation of extended music by leveraging TEAdapter control groups trained on data of distinct structural functionalities. In general, we consider controls over global, elemental, and structural levels. Experimental results demonstrate that the proposed TEAdapter enables multiple precise controls and ensures high-quality music generation. Our module is also lightweight and transferable to any diffusion model architecture. Available code and demos will be found soon at https://github.com/Ashley1101/TEAdapter.
Abstract:This paper presented DriveArena, the first high-fidelity closed-loop simulation system designed for driving agents navigating in real scenarios. DriveArena features a flexible, modular architecture, allowing for the seamless interchange of its core components: Traffic Manager, a traffic simulator capable of generating realistic traffic flow on any worldwide street map, and World Dreamer, a high-fidelity conditional generative model with infinite autoregression. This powerful synergy empowers any driving agent capable of processing real-world images to navigate in DriveArena's simulated environment. The agent perceives its surroundings through images generated by World Dreamer and output trajectories. These trajectories are fed into Traffic Manager, achieving realistic interactions with other vehicles and producing a new scene layout. Finally, the latest scene layout is relayed back into World Dreamer, perpetuating the simulation cycle. This iterative process fosters closed-loop exploration within a highly realistic environment, providing a valuable platform for developing and evaluating driving agents across diverse and challenging scenarios. DriveArena signifies a substantial leap forward in leveraging generative image data for the driving simulation platform, opening insights for closed-loop autonomous driving. Code will be available soon on GitHub: https://github.com/PJLab-ADG/DriveArena
Abstract:With the introduction of large language models (LLMs), automatic math reasoning has seen tremendous success. However, current methods primarily focus on providing solutions or using techniques like Chain-of-Thought to enhance problem-solving accuracy. In this paper, we focus on improving the capability of mathematics teaching via a Socratic teaching-based LLM (\texttt{SocraticLLM}), which guides learners toward profound thinking with clarity and self-discovery via conversation. We collect and release a high-quality mathematical teaching dataset, named \texttt{SocraticMATH}, which provides Socratic-style conversations of problems with extra knowledge. Also, we propose a knowledge-enhanced LLM as a strong baseline to generate reliable responses with review, guidance/heuristic, rectification, and summarization. Experimental results show the great advantages of \texttt{SocraticLLM} by comparing it with several strong generative models. The codes and datasets are available on \url{https://github.com/ECNU-ICALK/SocraticMath}.
Abstract:Chinese Spell Checking (CSC) aims to detect and correct spelling errors in sentences. Despite Large Language Models (LLMs) exhibit robust capabilities and are widely applied in various tasks, their performance on CSC is often unsatisfactory. We find that LLMs fail to meet the Chinese character-level constraints of the CSC task, namely equal length and phonetic similarity, leading to a performance bottleneck. Further analysis reveal that this issue stems from the granularity of tokenization, as current mixed character-word tokenization struggles to satisfy these character-level constraints. To address this issue, we propose C-LLM, a Large Language Model-based Chinese Spell Checking method that learns to check errors Character by Character. Character-level tokenization enables the model to learn character-level alignment, effectively mitigating issues related to character-level constraints. Furthermore, CSC is simplified to replication-dominated and substitution-supplemented tasks. Experiments on two CSC benchmarks demonstrate that C-LLM achieves an average improvement of 10% over existing methods. Specifically, it shows a 2.1% improvement in general scenarios and a significant 12% improvement in vertical domain scenarios, establishing state-of-the-art performance. The source code can be accessed at https://github.com/ktlKTL/C-LLM.